Unfortunately, limitations of the browser used by Answers.com means that we cannot see most symbols. It is therefore impossible to give a proper answer to your question. Please resubmit your question spelling out the symbols as "plus", "minus", "equals", "squared", "cubed" etc.
Is it meant to be 22 or is there a symbol missing between 2 and 2?
2 x 2 x 2 x 3 x s x s = 24s2
Given that ( G(x) ) is the inverse of ( S(g) ), we can express this relationship as ( S(G(x)) = x ). If ( G(2) = 16 ), then substituting into the equation gives ( S(16) = 2 ). Therefore, ( S(16) = 2 ).
2 x 2 x 5 x s x t
r=a(1+cos x) r^2=a^2(1+cos x)^2 = a^2 + 2[a^2][cos(x)] + [a^2][cos^2(x)] dr/dx = r' = -a sin(x) (r')^2 = [a^2][sin^2 (x)] Therefore perimeter (s) of curve r=a(1+cos x) in polar coordinate with x vary from 0 to Pi (due to curve is symmetry on axis x=0) is s = 2 Int { sqrt[r^2 + (r')^2] } dx where x vary from 0 to Pi. Thus sqrt[r^2 + (r')^2] = sqrt { a^2 + 2[a^2][cos(x)] + [a^2][cos^2 (x)] + [a^2][sin^2 (x)] } = sqrt { (2a^2)[1+cos(x)] } = [sqrt(2)]a {sqrt [1+cos(x)]} Then s = 2[sqrt(2)]a . Int {sqrt [1+cos(x)]} dx Let 1+cos(x) = 1+2cos^2 (x/2) - 1 = 2cos^2 (x/2) s = 2[sqrt(2)]a . Int {sqrt [2cos^2 (x/2)]} dx s = 4a . Int [cos(x/2)] dx where x vary from 0 to Pi s = 4a [sin(x/2)]/(1/2) s = 8a [sin(Pi/2) - sin(0)] s = 8a
multiplication is point to point and convolustion is point to multi-point ex multiplication-- s[n]=x[n].h[n] s[0]=[x[0].h[0] s[1]=[x[1].h[1] s[2]=[x[2].h[2] . . . .. s[n-1]=[x[n-1].h[n-1] convollustion s[n]=x[n]*h[n] s[0]=[x[0].h[0]+x[0].h[1]+x[0].h[2]+.......+x[0].h[n-1] s[1]=[x[1].h[0]+x[1].h[1]+x[1].h[2]+.......+x[1].h[n-1] s[2]=[x[2].h[2]+x[2].h[1]+x[2].h[2]+.......+x[2].h[n-1] . . . s[n-1]=[x[n-1].h[0]+x[n-1].h[1]+x[n-1].h[2]+.......+x[n-1].h[n-1].
2 x (2^(2 x 2)) + 2
S 2/x d/x bring the constant 2 out in front of the sign of integration 2 S 1/x dx you should know the integration of 1/x 2*ln(x) + C
2 x 2 x 2 x 5 x 5 = 200
2 x 2 x 3 x 3 = 36
2 x 2 x 2 x 3 x 5 = 120
2 x r x r x r x s = 2r3s
2 x 2 x 3 x 5 = 60