The indefinite integral of (1/x^2)*dx is -1/x+C.
For it to be a definite integral, you would need to specify a range. We can however give you the indefinite integral. The easiest way to do this is to think of it not as a fraction, but as a negative exponent: 1/x2 = x-2 It then becomes quite easy to integrate, as we can say in general: ∫(axn) dx = ax(n + 1) / (n + 1) + C In this case then, we have: ∫(x-2) dx = -x-1 + C, or -1/x + C
x/(x+1) = 1 - 1/(x + 1), so the antiderivative (or indefinite integral) is x + ln |x + 1| + C,
x/sqrt(x)=sqrt(x) integral sqrt(x)=2/3x3/2
Integral from 0 to pi 6sin2xdx: integral of 6sin2xdx (-3)cos2x+c. (-3)cos(2 x pi) - (-3)cos(2 x 0) -3 - -3 0
Better call it Li2(x).
With respect to x, this integral is (-15/2) cos2x + C.
The indefinite integral of (1/x^2)*dx is -1/x+C.
if you are integrating with respect to x, the indefinite integral of 1 is just x
An indefinite integral is a version of an integral that, unlike a definite integral, returns an expression instead of a number. The general form of a definite integral is: ∫ba f(x) dx. The general form of an indefinite integral is: ∫ f(x) dx. An example of a definite integral is: ∫20 x2 dx. An example of an indefinite integral is: ∫ x2 dx In the definite case, the answer is 23/3 - 03/3 = 8/3. In the indefinite case, the answer is x3/3 + C, where C is an arbitrary constant.
The antiderivative, or indefinite integral, of ex, is ex + C.
In order to evaluate a definite integral first find the indefinite integral. Then subtract the integral evaluated at the bottom number (usually the left endpoint) from the integral evaluated at the top number (usually the right endpoint). For example, if I wanted the integral of x from 1 to 2 (written with 1 on the bottom and 2 on the top) I would first evaluate the integral: the integral of x is (x^2)/2 Then I would subtract the integral evaluated at 1 from the integral evaluated at 2: (2^2)/2-(1^2)/2 = 2-1/2 =3/2.
For it to be a definite integral, you would need to specify a range. We can however give you the indefinite integral. The easiest way to do this is to think of it not as a fraction, but as a negative exponent: 1/x2 = x-2 It then becomes quite easy to integrate, as we can say in general: ∫(axn) dx = ax(n + 1) / (n + 1) + C In this case then, we have: ∫(x-2) dx = -x-1 + C, or -1/x + C
The indefinite integral of x dt is xt
The indefinite integral of sin x is equal to -cos x + C.
The Integral diverges. It has singularities whenever sin(x)+cos(x)=0. Singularities do not necessarily imply that the integral goes to infinity, but that is the case here, since the indefinite integral is x/2 + 1/2 Log[-Cos[x] - Sin[x]]. Obviously this diverges when evaluated at zero and 2pi.
x/(x+1) = 1 - 1/(x + 1), so the antiderivative (or indefinite integral) is x + ln |x + 1| + C,