If we assume a logarithm to the base e, then it is exactly 1.If we assume a logarithm to the base e, then it is exactly 1.If we assume a logarithm to the base e, then it is exactly 1.If we assume a logarithm to the base e, then it is exactly 1.
A logarithm of a reciprocal. For example, log(1/7) or log(7-1) = -log(7)
Zero, in logs to base 10, base e, or any base.
Logarithms of numbers less than one are negative. For example, the logarithm of 1/2 will be negative.
The logarithm of 1 to the base 1 is indeterminate. The logarithm of a number x to the base a is a number y, such that ay = x. The most common base a is 10, or the natural base a is e (2.718281828...). It is invalid to think of logarithms base 1, because 1 to the power of anything is still 1.
I suppose you mean log21 - the logarithm of 1, to the base 2. The logarithm of 1 (in any base) is zero, since x0 = 1 for any "x".
3: The negative of the logarithm (base 10) of the concentration. The logarithm of 1 is 0 and the logarithm of 10-3 is -3; the logarithm of their product is the sum of their individual logarithms, -3 in this instance, and the negative of -3 is +3.
Yes. The logarithm of 1 is zero; the logarithm of any number less than one is negative. For example, in base 10, log(0.1) = -1, log(0.01) = -2, log(0.001) = -3, etc.
The natural logarithm is the logarithm having base e, whereThe common logarithm is the logarithm to base 10.You can probably find both definitions in wikipedia.
The logarithm of [ 1 x 109 ] is 9.00000
A number for which a given logarithm stands is the result that the logarithm function yields when applied to a specific base and value. For example, in the equation log(base 2) 8 = 3, the number for which the logarithm stands is 8.
whats is the mantissa of logarithm