the nth term is = 31 + (n x -9) where n = 1,2,3,4,5 .........
so the 1st term is 31+ (1x -9) = 31 - 9 =22
so the 6th tern is 31 + (6 x -9) = -23
Hope this helps
The given sequence (7, 14, 21, 28, 35,....) is an arithmetic sequence where each term increases by 7. The nth term of the given sequence is 7n
They are: nth term = 6n-4 and the 14th term is 80
This is an arithmetic sequence which starts at 14, a = 14, and with a common difference of -1, d = -1. We can use the nth term formula an = a + (n - 1)d to get an = 14 + (n - 1)(-1) = 14 - n + 1 = 15 - n.
Oh, dude, you're hitting me with the math questions, huh? So, the formula for finding the nth term of an arithmetic sequence is a + (n-1)d, where a is the first term and d is the common difference. In this sequence, the common difference is 8 (because each term increases by 8), and the first term is 14. So, the formula for the nth term would be 14 + 8(n-1). You're welcome.
Clearly here the nth term isn't n25.
The nth term would be -2n+14 nth terms: 1 2 3 4 Sequence:12 10 8 6 This sequence has a difference of -2 Therefore it would become -2n. Replace n with 1 and you would get -2. To get to the first term you have to add 14. Therefore the sequence becomes -2n+14. To check your answer replace n with 2, 3 or 4. You will still obtain the number in the sequence that corresponds to the nth term. :)
14+9n
The nth term is: 3n+2 and so the next number will be 20
To find the nth term of the sequence 5, 15, 29, 47, 69, we first determine the differences between consecutive terms: 10, 14, 18, and 22. The second differences are constant at 4, indicating that the nth term is a quadratic function. By fitting the quadratic formula ( an^2 + bn + c ) to the sequence, we find that the nth term is ( 2n^2 + 3n ). Thus, the nth term of the sequence is ( 2n^2 + 3n ).
This appears to be a declining arithmetic series. If it is, the next term is 5, because each term is 3 less than the preceding term.=================================The 'N'th term is: [ 23 - 3N ].
The given sequence is decreasing by 2 each time, starting from 12. To find the nth term, we can use the formula for an arithmetic sequence: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference. In this case, (a_1 = 12), (d = -2), and we need to find the general formula for the nth term. Therefore, the nth term for the sequence 12 10 8 6 4 is (a_n = 12 + (n-1)(-2)), which simplifies to (a_n = 14 - 2n).
Tn = 10 + n2