1 Points: (7, 11) and (13, 17)
2 Slope: (17-11)/(13-11) = 6/6 = 1
3 Perpendicular slope: -1
4 Midpoint: (13+7)/2 and (17+11)/2 = (10, 14)
5 Equation: y-14 = -1(x-10) => y = -x+10+14
6 Perpendicular blsector equation: y = -x+24
7 In its general form: x+y-24 = 0
Points: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope: 3 Perpendicular slope: -1/3 Perpendicular equation: y -5s = -1/3(x -2s) => 3y = -x +17s Perpendicular bisector equation in its general form: x +3y -17s = 0
Points: (-2, 5) and (-8, -3) Midpoint: (-5, 1) Slope: 4/3 Perpendicular slope: -3/4 Perpendicular equation: y-1 = -3/4(x--5) => 4y = -3x-11 Perpendicular bisector equation in its general form: 3x+4y+11 = 0
Endpoints: (-4, -10) and (8, -1) Midpoint: (2, -5.5) Slope: 3/4 Perpendicular slope: -4/3 Perpendicular equation: y --5.5 = -4/3(x-2) => 3y = -4x -8.5 Perpendicular bisector equation in its general form: 4x+3y+8.5 = 0
Points: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope: 3 Perpendicular slope: -1/3 Perpendicular bisector equation: y-5s = -1/3(x-2s) => 3y = -x+17s In its general form: x+3y-17s = 0
In its general form of a straight line equation the perpendicular bisector equation works out as:- x-3y+76 = 0
Endpoints: (s, 2s) and (3s, 8s) Midpoint: (2s, 5s) Slope of line: 3/1 Slope of perpendicular line: -1/3 Perpendicular bisector equation: y-5s = -1/3(x-2s) => 3y = -x+17s Perpendicular bisector equation in its general form: x+3y-17s = 0
Points: (7, 3) and (-6, 1) Midpoint: (0.5, 2) Slope: 2/13 Perpendicular slope: -13/2 Perpendicular equation: y-2 = -13/2(x-0.5) => 2y = -13x+10.5 Perpendicular bisector equation in its general form: 26x+4y-21 = 0
Points: (-7, -3) and (-1, -4) Slope: -1/6 Perpendicular slope: 6 Mid-point (-4, -3.5) Equation: y - -3.5 = 6(x - -4) => y = 6x+20.5 Perpendicular bisector equation in its general form: 6x -y+20.5 = 0
Points: (s, 2s) and (3s, 8s) Slope: (8s-2s)/(3s-s) = 6s/2s = 3 Perpendicular slope: -1/3 Midpoint: (s+3s)/2 and (2s+8s)/2 = (2s, 5s) Equation: y-5s = -1/3(x-2s) => 3y-15s = -1(x-2s) => 3y = -x+17x Perpendicular bisector equation in its general form: x+3y-17s = 0
8
Points: (-4, 8) and (0, -2) Slope: (8--2)/((-4-0) = -5/2 Perpendicular slope: 2/5 Midpoint: (-4+0)/2, (8-2)/2 = (-2, 3) Equation: y-3 = 2/5(x--2) Multiply all terms by 5: 5y-15 = 2(x--2) => 5y = 2x+19 Perpendicular bisector equation in its general form: 2x-5y+19 = 0
Points: (p, q) and (7p, 3q) Midpoint: (4p, 2q) Slope: q/3p Perpendicular slope: -3p/q Perpendicular bisector equation:- => y-2q = -3p/q(x-4p) => qy-2q^2 = -3p(x-4p) => qy-2q^2 = -3px+12p^2 => qy = -3px+12p^2+2q^2 In its general form: 3px+qy-12p^2-2q^2 = 0