The coordinates of the point of intersection represents the solution to the linear equations.
Because linear lines can't intersect in two seperate places. They either intersect at one specific coordinate, or the lines are on top of each other and they intersect at every point.
A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.
If it is a linear system, then it could have either 1 solution, no solutions, or infinite solutions. To understand this, think of two lines (consider a plane which is just 2 dimensional - this represents 2 variables and 2 equations, but the idea can be extended to more dimensions).If the 2 lines intersect at a point, then that point represents a solution. If the lines are parallel, then they never intersect, and there is no solution. If the equations are such that they are just different ways of describing the same line, then they intersect at every point, so there are infinite solutions. If you have more than 2 lines then maybe some of them will intersect, but this is not a solution for the whole system. If all lines intersect at a single point, then that is the single solution for the whole system.If you have equations that describe something other than a straight line, then it's possible that they may intersect in more than one point.
If the lines are straight lines , then there is only one solution, which is the point of intersection of the two lines. It will have ( x,y) coordinates. However, if the lines are curved in any way , there may be more than two or more points of intersection.
If you refer to linear equations, graphed as straight lines, two inconsistent equations would result in two parallel lines.
They do not. A set of lines can also be considered as a system of linear equations. But the fact that there is such a system does not mean that the lines intersect.
one solution; the lines that represent the equations intersect an infinite number of solution; the lines coincide, or no solution; the lines are parallel
No. A linear equation represents a straight line and the solution to a set of linear equations is where the lines intersect; two straight lines can only intersect at most at a single point - two straight lines may be parallel in which case they will not intersect and there will be no solution. With more than two linear equations, it may be that they do not all intersect at the same point, in which case there is no solution that satisfies all the equations together, but different solutions may exist for different subsets of the lines.
Because linear lines can't intersect in two seperate places. They either intersect at one specific coordinate, or the lines are on top of each other and they intersect at every point.
Graphically, it is the point of intersection where the lines (in a linear system) intersect. If you have 2 equations and two unknowns, then you have a 2 lines in a plane. The (x,y) coordinates of the point where the 2 lines intersect represent the values which satisfies both equations. If there are 3 equations and 3 unknowns, then you have lines in 3 dimensional space. If all 3 lines intersect at a point then there is a solution to the system. With more than 3 variables, it is difficult to visualize more dimensions, though.
A system of two linear equations in two unknowns can have three possible types of solutions: exactly one solution (when the lines intersect at a single point), no solutions (when the lines are parallel and never intersect), or infinitely many solutions (when the two equations represent the same line). Thus, there are three potential outcomes for such a system.
A system of linear equations is consistent if there is only one solution for the system. Thus, if you see that the drawn lines intersect, you can say that the system is consistent, and the point of intersection is the only solution for the system. A system of linear equations is inconsistent if it does not have any solution. Thus, if you see that the drawn lines are parallel, you can say that the system is inconsistent, and there is not any solution for the system.
Yes, a system of linear equations can have zero solutions, which is known as an inconsistent system. This occurs when the equations represent parallel lines that never intersect, meaning there is no point that satisfies all equations simultaneously. A common example is the system represented by the equations (y = 2x + 1) and (y = 2x - 3), which are parallel and thus have no solutions.
A linear equation system has no solution when the equations represent parallel lines that never intersect. This occurs when the coefficients of the variables are proportional, but the constant terms are not, indicating that the lines have the same slope but different y-intercepts. Consequently, the system is inconsistent, as there are no values that satisfy all equations simultaneously.
That they, along with the equations, are invisible!
Yes, you can determine the nature of a system of two linear equations by analyzing their slopes and intercepts. If the lines represented by the equations have different slopes, the system has one solution (they intersect at a single point). If the lines have the same slope but different intercepts, there is no solution (the lines are parallel). If the lines have the same slope and the same intercept, there are infinitely many solutions (the lines coincide).
The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.