Study guides

☆☆

Q: What is the point at which the lines intersect in a system of linear equations?

Write your answer...

Submit

Related questions

They do not. A set of lines can also be considered as a system of linear equations. But the fact that there is such a system does not mean that the lines intersect.

one solution; the lines that represent the equations intersect an infinite number of solution; the lines coincide, or no solution; the lines are parallel

Because linear lines can't intersect in two seperate places. They either intersect at one specific coordinate, or the lines are on top of each other and they intersect at every point.

No. A linear equation represents a straight line and the solution to a set of linear equations is where the lines intersect; two straight lines can only intersect at most at a single point - two straight lines may be parallel in which case they will not intersect and there will be no solution. With more than two linear equations, it may be that they do not all intersect at the same point, in which case there is no solution that satisfies all the equations together, but different solutions may exist for different subsets of the lines.

Graphically, it is the point of intersection where the lines (in a linear system) intersect. If you have 2 equations and two unknowns, then you have a 2 lines in a plane. The (x,y) coordinates of the point where the 2 lines intersect represent the values which satisfies both equations. If there are 3 equations and 3 unknowns, then you have lines in 3 dimensional space. If all 3 lines intersect at a point then there is a solution to the system. With more than 3 variables, it is difficult to visualize more dimensions, though.

A system of equations will have one solution if the graphs of the lines intersect. This is because the lines intersect at a single point. Let's say that point is (a, b). The x = a, y = b is the one and only solution for the system.

That they, along with the equations, are invisible!

A system of linear equations is consistent if there is only one solution for the system. Thus, if you see that the drawn lines intersect, you can say that the system is consistent, and the point of intersection is the only solution for the system. A system of linear equations is inconsistent if it does not have any solution. Thus, if you see that the drawn lines are parallel, you can say that the system is inconsistent, and there is not any solution for the system.

A "system" of equations is a set or collection of equations that you deal with all together at once. Linear equations (ones that graph as straight lines) are simpler than non-linear equations, and the simplest linear system is one with two equations and two variables.

When the lines never intersect, usually when they are parallel.

The two equations represent parallel lines.

A system of equations will have no solutions if the line they represent are parallel. Remember that the solution of a system of equations is physically represented by the intersection point of the two lines. If the lines don't intersect (parallel) then there can be no solution.

The system of equations can have zero solutions, one solution, two solutions, any finite number of solutions, or an infinite number of solutions. If it is a system of LINEAR equations, then the only possibilities are zero solutions, one solution, and an infinite number of solutions. With linear equations, think of each equation describing a straight line. The solution to the system of equations will be where these lines intersect (a point). If they do not intersect at all (or maybe two of the lines intersect, and the third one doesn't) then there is no solution. If the equations describe the same line, then there will be infinite solutions (every point on the line satisfies both equations). If the system of equations came from a real world problem (like solving for currents or voltages in different parts of a circuit) then there should be a solution, if the equations were chosen properly.

Since the lines that intersect are the equations, if they intersect once they have one solution.

perpendicular

extraneous solution. or the lines do not intersect. There is no common point (solution) for the system of equation.

NO! A linear system can only have one solution (the lines intersect at one point), no solution (the lines are parallel), and infinitely many solutions (the lines are equivalent).

They are simultaneous equations.

To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent). To solve a system means to find the x- and y-values for which both of the equations are true. Systems of linear equations can be solved using a variety of methods. One method is to graph the equations as two lines and examine them. If the lines intersect at exactly one point, there is one solution to the system, and the system is called consistent. If the two lines are on top of one another, there are an infinite number of solutions, because each point on the line is considered a solution (this system is called dependent). If the two lines are parallel, there is no solution (this system is called inconsistent).

The solution to a system is an ordered pair (x,y) where the two lines intersect.

If it is a linear system, then it could have either 1 solution, no solutions, or infinite solutions. To understand this, think of two lines (consider a plane which is just 2 dimensional - this represents 2 variables and 2 equations, but the idea can be extended to more dimensions).If the 2 lines intersect at a point, then that point represents a solution. If the lines are parallel, then they never intersect, and there is no solution. If the equations are such that they are just different ways of describing the same line, then they intersect at every point, so there are infinite solutions. If you have more than 2 lines then maybe some of them will intersect, but this is not a solution for the whole system. If all lines intersect at a single point, then that is the single solution for the whole system.If you have equations that describe something other than a straight line, then it's possible that they may intersect in more than one point.

Those two statements are linear equations, not lines. If the equations are graphed, each one produces a straight line. The lines intersect at the point (-1, -2).

If the equations are linear, they may have no common solutions, one common solutions, or infinitely many solutions. Graphically, in the simplest case you have two straight lines; these can be parallel, intersect in a same point, or actually be the same line. If the equations are non-linear, they may have any amount of solutions. For example, two different intersecting ellipses may intersect in up to four points.

If you refer to linear equations, graphed as straight lines, two inconsistent equations would result in two parallel lines.

When (the graph of the equations) the two lines intersect. The equations will tell you what the slopes of the lines are, just look at them. If they are different, then the equations have a unique solution..

People also asked