For the tangential value tan θ = 1/2, the angle θ is 26.565° (0.464 radians).
The tangent is the opposite side over the adjacent side for an angle,
or otherwise sin θ /cos θ.
tan 2 pi = tan 360º = 0
To find the value of (\tan(15^\circ) \tan(195^\circ)), we can use the identity (\tan(195^\circ) = \tan(15^\circ + 180^\circ) = \tan(15^\circ)). Thus, (\tan(195^\circ) = \tan(15^\circ)). Consequently, (\tan(15^\circ) \tan(195^\circ) = \tan(15^\circ) \tan(15^\circ) = \tan^2(15^\circ)). The exact value of (\tan^2(15^\circ)) can be computed, but it is important to note that it will yield a positive value.
tan 165/2 = 1.068691
If tan A = 1/2, then sin A = ? We use the Pythagorean identity 1 + cot2 A = csc2 A to find csc A, and then the reciprocal identity sin A = 1/csc A to find sin A. tan A = 1/2 (since tan A is positive, A is in the first or the third quadrant) cot A = 1/tan A = 1/(1/2) = 2 1 + cot2 A = csc2 A 1 + (2)2 = csc2 A 5 = csc2 A √5 = csc A (when A is in the first quadrant) 1/√5 = sin A √5/5 = sin A If A is in the third quadrant, then sin A = -√5/5.
The value of (\tan(22.5^\circ)) can be calculated using the half-angle formula for tangent: [ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos(x)}{\sin(x)} ] For (x = 45^\circ), this simplifies to: [ \tan(22.5^\circ) = \sqrt{2} - 1 \approx 0.4142 ] Thus, (\tan(22.5^\circ)) is approximately 0.4142.
The value of tan A is not clear from the question.However, sin A = sqrt[tan^2 A /(tan^2 A + 1)]
1
Tan(3a_)(sqrt(2) / 2 )(sqrt(2)/2) + 0.5 Tan(3a) ( 2/4) + 1/2 Tan(3a) ( 1/2 + 1/2 ) Sin(3a) (1) / 2Cos(3a) + 1/2 Without beinf equated to anything this will not go any further.
To find the exact value of tan 105°. First, of all, we note that sin 105° = cos 15°; and cos 105° = -sin 15°. Thus, tan 105° = -cot 15° = -1 / tan 15°. Using the formula tan(α - β) = (tan α - tan β) / (1 + tan α tan β); and using, also, the familiar values tan 45° = 1, and tan 30° = ½ / (½√3) = 1/√3 = ⅓√3; we have, tan 15° = (1 - ⅓√3) / (1 + ⅓√3); whence, cot 15° = (1 + ⅓√3) / (1 - ⅓√3) = (√3 + 1) / (√3 - 1) {multiplying through by √3} = (√3 + 1)2 / (√3 + 1)(√3 - 1) = (3 + 2√3 + 1) / (3 - 1) = (4 + 2√3) / 2 = 2 + √3. Therefore, tan 105° = -cot 15° = -2 - √3, which is the result we sought. We are asked the exact value of tan 105°, which we gave above. We can test the above result to 9 decimal places, say, by means of a calculator: -2 - √3 = -3.732050808; and tan 105° = -3.732050808; thus indicating that we have probably got the right result.
tan 2 pi = tan 360º = 0
tan u/2 = sin u/1+cos u
The exact value of 60 degrees would be 1/2. This is a math problem.
To find the value of (\tan(15^\circ) \tan(195^\circ)), we can use the identity (\tan(195^\circ) = \tan(15^\circ + 180^\circ) = \tan(15^\circ)). Thus, (\tan(195^\circ) = \tan(15^\circ)). Consequently, (\tan(15^\circ) \tan(195^\circ) = \tan(15^\circ) \tan(15^\circ) = \tan^2(15^\circ)). The exact value of (\tan^2(15^\circ)) can be computed, but it is important to note that it will yield a positive value.
3
tan 165/2 = 1.068691
If tan A = 1/2, then sin A = ? We use the Pythagorean identity 1 + cot2 A = csc2 A to find csc A, and then the reciprocal identity sin A = 1/csc A to find sin A. tan A = 1/2 (since tan A is positive, A is in the first or the third quadrant) cot A = 1/tan A = 1/(1/2) = 2 1 + cot2 A = csc2 A 1 + (2)2 = csc2 A 5 = csc2 A √5 = csc A (when A is in the first quadrant) 1/√5 = sin A √5/5 = sin A If A is in the third quadrant, then sin A = -√5/5.
Tan(45) = Sin(45) / Cos(45) Sin(45) = sqrt(2) / 2 Cos(45) = sqrt)2)/2 Hence Tan(45) = [sqrt(2) / 2] / [sqrt(2)/2] Division of fractions. [sqrt(2) / 2] / [sqrt(2)/2] => sqrt(2) /2 X 2/ sqrt(2) Cancel down by 'sqrt(2) ; 1/2 X 2/1 Cancel down by '2' 1/1 X 1/1 = 1/1 = 1 Hence Tan(45) = 1 .