tan (30 degrees) would be equal to 0.577350269.
To find the value of (\tan(15^\circ) \tan(195^\circ)), we can use the identity (\tan(195^\circ) = \tan(15^\circ + 180^\circ) = \tan(15^\circ)). Thus, (\tan(195^\circ) = \tan(15^\circ)). Consequently, (\tan(15^\circ) \tan(195^\circ) = \tan(15^\circ) \tan(15^\circ) = \tan^2(15^\circ)). The exact value of (\tan^2(15^\circ)) can be computed, but it is important to note that it will yield a positive value.
= tan (48.323 deg) = 1.1232
tan 2 pi = tan 360º = 0
1
tan 165/2 = 1.068691
tan (30 degrees) would be equal to 0.577350269.
cot(15)=1/tan(15) Let us find tan(15) tan(15)=tan(45-30) tan(a-b) = (tan(a)-tan(b))/(1+tan(a)tan(b)) tan(45-30)= (tan(45)-tan(30))/(1+tan(45)tan(30)) substitute tan(45)=1 and tan(30)=1/√3 into the equation. tan(45-30) = (1- 1/√3) / (1+1/√3) =(√3-1)/(√3+1) The exact value of cot(15) is the reciprocal of the above which is: (√3+1) /(√3-1)
If tan 3a is equal to sin cos 45 plus sin 30, then the value of a = 0.4.
tan(30)=.5773502692
tan 13/30
The value of tan A is not clear from the question.However, sin A = sqrt[tan^2 A /(tan^2 A + 1)]
tan(135) = -tan(180-135) = -tan(45) = -1
tan(22.5)=0.414213562
30°
= tan (48.323 deg) = 1.1232
Tan 42 degrees = 0.9004
Tan(74 degrees) = 3.487414444.....