answersLogoWhite

0

It is: -3072

User Avatar

German Haag

Lvl 9
2y ago

What else can I help you with?

Related Questions

What is the value of the 11th term in the sequence -3 -6 -12 -24 ...?

It is: -3072


What is descending geometric sequence?

A geometric sequence is a sequence where each term is a constant multiple of the preceding term. This constant multiplying factor is called the common ratio and may have any real value. If the common ratio is greater than 0 but less than 1 then this produces a descending geometric sequence. EXAMPLE : Consider the sequence : 12, 6, 3, 1.5, 0.75, 0.375,...... Each term is half the preceding term. The common ratio is therefore ½ The sequence can be written 12, 12(½), 12(½)2, 12(½)3, 12(½)4, 12(½)5,.....


What is the value of the 11th term in the sequence -3 -6 -12 -24?

This is a geometric series with common ratio 2. The nth term is un = -3*2(n-1) So u11 = -3*2(11-1) = -3*210 = -3*1024 = -3072


What is the value of the nth term in the following arithmetic sequence 12 6 0 -6 ...?

To find the value of the nth term in an arithmetic sequence, you can use the formula: (a_n = a_1 + (n-1)d), where (a_n) is the nth term, (a_1) is the first term, (n) is the term number, and (d) is the common difference between terms. In this sequence, the first term (a_1 = 12) and the common difference (d = -6 - 0 = -6). So, the formula becomes (a_n = 12 + (n-1)(-6)). Simplifying this gives (a_n = 12 - 6n + 6). Therefore, the value of the nth term in this arithmetic sequence is (a_n = 18 - 6n).


Nth term of the sequence 12 7 2 -3 .. I know what the next numbers in the sequence are but what is the expression for the nth term?

12 - 5(n-1)


What is the formula for the nth term for the sequence 12-21-30-39-48?

> since the value rises by nine at each step and the first term is 12 the formula for > the nth term is: 12+(n-1)*9 Which simplifies to Sn = 9n + 3


What is the nth term for the sequence 0 4 12 24 40?

To find the nth term of a sequence, we first need to identify the pattern or rule governing the sequence. In this case, the sequence appears to be increasing by 4, then 8, then 12, then 16, and so on. This pattern suggests that the nth term can be represented by the formula n^2 + n, where n is the position of the term in the sequence. So, the nth term for the given sequence is n^2 + n.


What is the formula for the nth term of this sequence 17 29 41 53 65 77?

t(n) = 12*n + 5


Which sequence follows the rule 8n-4. where n represents the position of a term in the sequence?

12


Is geometric sequence a sequence in which each successive terms of the sequence are in equal ratio?

Yes, that's what a geometric sequence is about.


What is the 12th term of a geometric sequence in which the common ratio is 2 and the first term is 12?

36


What is the nth term of the sequence -4 4 12 20 29?

The nth term of the sequence -4 4 12 20 29 is 8n+12 because each time the sequence is adding 8 which is where the 8n comes from. Then you take 8 away from -4 and because a - and - equal a + the answer is 12. Which is where the 12 comes from. Hope I helped.