answersLogoWhite

0


Best Answer

Let's consider a 2 inch by 2 inch square.

The area is 2x2=4 square inches.

The perimeter is 2+2+2+2=8 inches.

User Avatar

Wiki User

14y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Example of finding perimeters and areas?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What was the most significant contribution of pi to the field of mathematics?

it has helped in finding the perimeters and areas of circle.


Why would two shapes have equal areas and perimeters?

There is no particular reason. In fact, in general, two shapes will have different areas or perimeters or both.


How is maths is important for construction?

It's very important such as finding out areas and perimeters, etc. Also important is grammar, you should learnt hat as well as math.


What do you know about the perimeters of similar figures?

The areas are different.


What is the relationship between perimeters and areas of similar figures?

Whatever the ratio of perimeters of the similar figures, the areas will be in the ratios squared. Examples: * if the figures have perimeters in a ratio of 1:2, their areas will have a ratio of 1²:2² = 1:4. * If the figures have perimeters in a ratio of 2:3, their areas will have a ratio of 2²:3² = 4:9.


Can a parallelogram and a rectangle have the same perimeters but different areas?

Yes.


Two triangles are similar and have a ratio of similarity of 3 1 What is the ratio of their perimeters and the ratio of their areas?

The ratio of their perimeters will be 3:1, while the ratio of their areas will be 9:1 (i.e. 32:1)


What are the formulas of finding the perimeter of the different polygons?

Perimeters = sum of sides added together


Is it true that the greater the perimeter the greater the area?

No, in general that is not true. For two similar figures it is true. But you can easily design two different figures that have the same perimeters and different areas, or the same area and different perimeters. For example, two rectangles with a different length-to-width ratio.


How do you calculate Areas and perimeters for Quadrilaterals?

P= Add all sides A= LxW


What is the width of two similar rectangles are 45 yd and 35 yd what is the ratio of the perimeters of the areas?

The ratio of their perimeters is also 45/35 = 9/7. The ratio of their areas is (9/7)2 = 81/63


What is the ratio of the areas of an equilateral triangle and a circle if their perimeters are same?

It is 0.6046 : 1 (approx).