First find the midpoint the slope and the perpendicular slope of the points of (p, q) and (7p, 3q)
Midpoint = (7p+p)/2 and (3q+q)/2 = (4p, 2q)
Slope = (3q-q)/(7p-p) = 2q/6p = q/3p
Slope of the perpendicular is the negative reciprocal of q/3p which is -3p/q
From the above information form an equation for the perpendicular bisector using the straight line formula of y-y1 = m(x-x1)
y-2q = -3p/q(x-4p)
y-2q = -3px/q+12p2/q
y = -3px/q+12p2/q+2q
Multiply all terms by q and the perpendicular bisector equation can then be expressed in the form of:-
3px+qy-12p2-2q2 = 0
A perpendicular line is one that is at right angle to another - usually to a horizontal line. A perpendicular bisector is a line which is perpendicular to the line segment joining two identified points and which divides that segment in two.
x2-x1,y2-y1
The equation of a line through point (x0, y0) with gradient m is given by:y - y0 = m(x - x0)The gradient (m) of a line between two points (x0, y0) and (x1, y1) is given by:m = change_in_y/change_in_x = (y1 - y0)/(x1 - x0)→ The equation of the line between (11, 13) and (17, 19) is given by:y - 13 = (19-13)/(17-11) (x - 11)→ y - 13 = 6/6 (x - 11)→ y - 13 = x - 11→ y = x + 2and its gradient is m = 1.The gradient (m') of a line perpendicular to a line with gradient m is such that mm' = -1, ie m' = -1/m→ The gradient of the perpendicular line to the line between (11, 13) and (17, 19) has gradient m' = -1/1 = -1.The perpendicular bisector goes through the point midway between (11, 13) and (17, 19) which is given by the average of the x and y coordinates: ((11+17)/2, (13+19)/2) = (14, 16)Thus the perpendicular bisector of the line joining (11, 13) to (17,19) is given by:y - 16 = -1(x - 14)→ y - 16 = -x + 14→ y + x = 30Which in its general form is: x+y-30 = 0
If the points are (b, 2) and (6, c) then to satisfy the straight line equations it works out that b = -2 and c = 4 which means that the points are (-2, 2) and (6, 4)
There are letters in the alphabet with both parallel and perpendicular lines. In alphabetical order, they are E, F, and H. If the joining point can be considered perpendicular and parallel, then B, D, P, and R also match the criterion.
Given a straight line joining the points A and B, the perpendicular bisector is a straight line that passes through the mid-point of AB and is perpendicular to AB.
Points: (-2, 5) and (-8, -3) Midpoint: (-5, 1) Slope: 4/3 Perpendicular slope: -3/4 Use: y-1 = -3/4(x--5) Bisector equation: y = -3/4x-11/4 or as 3x+4y+11 = 0
Midpoint = (3+7)/2, (5+7)/2 = (5, 6) Slope of line segment = 7-5 divided by 7-3 = 2/4 = 1/2 Slope of the perpendicular = -2 Equation of the perpendicular bisector: y-y1 = m(x-x1) y-6 =-2(x-5) y = -2x+10+6 Equation of the perpendicular bisector is: y = -2x+16
A perpendicular line is one that is at right angle to another - usually to a horizontal line. A perpendicular bisector is a line which is perpendicular to the line segment joining two identified points and which divides that segment in two.
y = -2x+16 which can be expressed in the form of 2x+y-16 = 0
Their values work out as: a = -2 and b = 4
The perpendicular bisector of the straight line joining the two points.
The perpendicular bisector of the line joining the two points.
Points: (s, 2s) and (3s, 8s) Slope: (8s-2s)/(3s-s) = 6s/2s = 3 Perpendicular slope: -1/3 Midpoint: (s+3s)/2 and (2s+8s)/2 = (2s, 5s) Equation: y-5s = -1/3(x-2s) => 3y-15s = -1(x-2s) => 3y = -x+17x Perpendicular bisector equation in its general form: x+3y-17s = 0
It is the perpendicular bisector of AB, the line joining the two points.
1 Points: (1, 2) and (3, 4) 2 Slope: (2-4)/(1-3) = 1 3 Perpendicular slope: -1 4 Midpoint: (1+3)/2 and (2+4)/2 = (2, 3) 5 Equation: y-2 = 1(x-1) => y = x+1 6 Bisector equation: y-3 = -1(x-2) => y = -x+5
x2-x1,y2-y1