67 degrees
17
i think its ABC and if that not right ask a teacher for the answer
yes
The problem is meaningless without a diagram but I am guessing that ABC make a triangle and D is on the extension of AB beyond B. In that case we use the exterior angle theorem to get CBD = C + A, so 125 = 90 + A and A = 35.
It can be but need not be.
67 degrees
Angle abc.
This is called an isoceles triangle. An isoceles triangles is when two angles equal.
Angle abc will form a right angle if and only if, segment ab is perpendicular to segment bc.
52.4 cm
If angle ACB is the right angle then ab is the hypotenuse. Then, (ab)2 = 62 + 92 = 36 + 81 = 117 ab = √117 = 10.8 (3 sf) If angle BAC is the right angle then ab is one leg of a right angled triangle with bc the hypotenuse. 92 = 62 + (ab)2 : (ab)2 = 92 - 62 = 81 - 36 = 45 ab = √45 = 6.71 (3 sf)
If, as is normal, ab represents a times b, etc then ab + ab + cc = 2ab + c2 which is generally not the same as abc.
when angle abc and abd equalls to 90 degree then ab perpendicular to cd
If the sides AB, BC and CA of triangle ABC correspond to the sides DE, EF and FD of triangle DEF, then the two triangles are congruent if:AB = DE, BC = EF and CA = FD (SSS)AB = DE, BC = EF and angle ABC = angle DEF (SAS)AB = DE, angle ABC = angle DEF, angle BCA = angle EFD (ASA)If the triangles are right angled at A and D so that BC and EF are hypotenuses, then the triangles are congruent ifBC = EF and AB = DE (RHS)BC = EF and angle ABC = angle DEF (RHA).
AC = 2*sqrt(3) = 3.4641AB = 2*sqrt(7) = 5.2915 angle ACB = 90 degrees.
If CB is the hypotenuse, then AB measures, √ (62 - 52) = √ 11 = 3.3166 (4dp) If AB is the hypotenuse then it measures, √ (62 + 52) = √ 61 = 7.8102 (4dp)