No, for instance the Klein group is finite and abelian but not cyclic. Even more groups can be found having this chariacteristic for instance Z9 x Z9 is abelian but not cyclic
The set of integers, under addition.
Yes. Lets call the generator of the group z, then every element of the group can be written as zk for some k. Then the product of two elements is: zkzm=zk+m Notice though that then zmzk=zm+k=zk+m=zkzm, so the group is indeed abelian.
The general answer is no. Consider A4={(1),(12)(34),(13)(24),(14)(23),(123),(124),(132),(134),(142),(143),(234),(243)}. The subgroups of A4 are: A4, , , , =, =, =, =, {(1),(12)(34),(13)(24),(14)(23)}, {(1)}. The order of A4 is 12, the order of , and is 2, the order of =, =, = and = is 3, the order of {(1),(12)(34),(13)(24),(14)(23)} is 4, and the order of is 1. Clearly there are no subgroups of order 6, but 6 definitely divides the order of A4. The statement is true for all finite abelian groups, and when d is a power of a prime (i.e., when d=pk for a prime p and a non-negative integer k).
The Abelian or commutative property of multiplication of numbers.
every abelian group is not cyclic. e.g, set of (Q,+) it is an abelian group but not cyclic.
By LaGrange's Thm., the order of an element of a group must divide the order of the group. Since 3 is prime, up to isomorphism, the only group of order three is {1,x,x^2} where x^3=1. Note that this is a finite cyclic group. Since all cyclic groups are abelian, because they can be modeled by addition mod an integer, the group of order 3 is abelian.
Abelian meaning commutative. If the symmetry group of a square is commutative then it's an abelian group or else it's not.
The non-abelian group of smallest order (six elements) is the symmetric group S3. This group consists of all possible permutations of three elements, and it is non-abelian because the composition of permutations does not commute in general. It is the smallest non-abelian group because any group with fewer than six elements is either abelian or not a group.
An abelian group is a group in which ab = ba for all members a and b of the group.
The term abelian is most commonly encountered in group theory, where it refers to a specific type of group known as an abelian group. An abelian group, simply put, is a commutative group, meaning that when the group operation is applied to two elements of the group, the order of the elements doesn't matter.For example:Let G be a group with multiplication * or addition +. If, for any two elements a, b Є G, a*b = b*a or a + b = b + a, then we call the group abelian.There are other uses of the term abelian in other fields of math, and most of the time, the idea of commutativity is involved.The term is named after the mathematician, Niels Abel.
There are 5 groups of order 8 up to isomorphism. 3 abelian ones (C8, C4xC2, C2xC2xC2) and 2 non-abelian ones (dihedral group D8 and quaternion group Q)
An abelianization is a homomorphism which transforms a group into an abelian group.
No.
No.
No, for instance the Klein group is finite and abelian but not cyclic. Even more groups can be found having this chariacteristic for instance Z9 x Z9 is abelian but not cyclic
Abelianization is a homomorphism which transforms a group into an Abelian group.