No, for instance the Klein group is finite and abelian but not cyclic. Even more groups can be found having this chariacteristic for instance Z9 x Z9 is abelian but not cyclic
Chat with our AI personalities
Yes. Lets call the generator of the group z, then every element of the group can be written as zk for some k. Then the product of two elements is: zkzm=zk+m Notice though that then zmzk=zm+k=zk+m=zkzm, so the group is indeed abelian.
Normally, a cyclic group is defined as a set of numbers generated by repeated use of an operator on a single element which is called the generator and is denoted by g.If the operation is multiplicative then the elements are g0, g1, g2, ...Such a group may be finite or infinite. If for some integer k, gk = g0 then the cyclic group is finite, of order k. If there is no such k, then it is infinite - and is isomorphic to Z(integers) with the operation being addition.
The abelian groups of order 24 are C3xC8, C2xC12, C2xC2xC6. There are other 12 non-abelian groups of order 24
The set of integers, under addition.
The order of a group is the same as its cardinality - i.e. the number of elements the set contains. The order of a particular element is the order of the (cyclic) group generated by that element - i.e. the order of the group {...a-4, a-3, a-2, a-1, e, a, a2, a3, a4...}. If these powers do not go on forever, it will have a finite order; otherwise the order will be infinite.