answersLogoWhite

0

What else can I help you with?

Related Questions

What are the coordinates of the image of the point (-412) under a dilation with a scale factor of 4 and the center of dilation at the origin?

If the original point was (-4, 12) then the image is (-16, 48).


What is the image of Q for a dilation with center (0 0) and a scale factor of 0.5?

To find the image of point Q under a dilation centered at (0, 0) with a scale factor of 0.5, you multiply the coordinates of Q by 0.5. If Q has coordinates (x, y), the image of Q after dilation will be at (0.5x, 0.5y). This means that the new point will be half the distance from the origin compared to the original point Q.


What are the coordinates of the image of the point (8-9) after a dilation by a scale factor of 5 origin as the dilation followed by a translation over the x-axis?

To find the image of the point (8, -9) after a dilation by a scale factor of 5 from the origin, we multiply each coordinate by 5. This gives us the new coordinates (8 * 5, -9 * 5) = (40, -45). If we then translate this point over the x-axis, we would change the y-coordinate to its opposite, resulting in the final coordinates (40, 45).


A B C Has coordinates of A(6 7) B(4 2) and C(0 7). Find the coordinates of its image after a dilation centered at the origin with a scale factor of 2.?

To find the image of points A, B, and C after a dilation centered at the origin with a scale factor of 2, you multiply each coordinate by 2. The new coordinates are A'(12, 14), B'(8, 4), and C'(0, 14). Thus, the images of the points after dilation are A'(12, 14), B'(8, 4), and C'(0, 14).


A photographer knows that the center of a camera lens acts as a center of dilation, where the image of an object forms behind the lens.Is the scale factor for this dilation negative or positive?

Negative


What is the image of (5 4) when it is rotated 180 degrees about the origin?

To find the image of the point (5, 4) when rotated 180 degrees about the origin, you can apply the transformation that changes the signs of both coordinates. Thus, the new coordinates will be (-5, -4). Therefore, the image of the point (5, 4) after a 180-degree rotation about the origin is (-5, -4).


What is the image of P for a dilation with center 0 0 and a scale factor of 2.5?

It is (2.5x, 2.5y) where P =(x,y).


What is the image of P for a dilation with center (0 0) and a scale factor of 2.5?

It is (2.5x, 2.5y) where P =(x,y).


How can you determine whether a dilation's is a reduction or a enlargement?

To determine whether a dilation is a reduction or an enlargement, compare the scale factor to 1. If the scale factor is greater than 1, the dilation is an enlargement, as the image will be larger than the original. Conversely, if the scale factor is between 0 and 1, the dilation is a reduction, resulting in a smaller image. Additionally, you can observe the distances from the center of dilation; if they increase, it's an enlargement, and if they decrease, it's a reduction.


What are the coordinates of the image of the point 2 5 after it is rotated 180 degrees clockwise about the origin?

Rotating it about the origin 180° (either way, it's half a turn) will transform a point with coordinates (x, y) to that with coordinates (-x, -y) Thus (2, 5) → (-2, -5)


In a dilation the image is always similar to its pre-image?

Yes, it is.


Why is a dilation not an isometry?

Because the image is not the same size as the preimage. To do a dilation all you do is make the image smaller or larger than it was before.