answersLogoWhite

0

P! / q!(p-q)!

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
ViviVivi
Your ride-or-die bestie who's seen you through every high and low.
Chat with Vivi
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: What does p over q mean in algebra?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Algebra

What is pq in algebra?

P x Q


Answer this maths algebra question with workings 1750 can be written as 2 x 5p x q where p and q are prime numbers Work out the value of p and the value of q?

750 can be written as 2 x 5p x q where p and q are prime numbers. The value of p is 3 and the value of q is 7


What does the statement p arrow q mean?

It means the statement P implies Q.


Is not p and q equivalent to not p and not q?

Think of 'not' as being an inverse. Not 1 = 0. Not 0 = 1. Using boolean algebra we can look at your question. 'and' is a test. It wants to know if BOTH P and Q are the same and if they are 1 (true). If they are not the same, or they are both 0, then the result is false or 0. not P and Q is rewritten like so: (P and Q)' = X not P and not Q is rewritten like: P' and Q' = X (the apostrophe is used for not) We will construct a truth table for each and compare the output. If the output is the same, then you have found your equivalency. Otherwise, they are not equivalent. P and Q are the inputs and X is the output. P Q | X P Q | X ------ 0 0 | 1 0 0 | 1 0 1 | 1 0 1 | 0 1 0 | 1 1 0 | 0 1 1 | 0 1 1 | 0 Since the truth tables are not equal, not P and Q is not equivalent to not P and not Q. Perhaps you meant "Is NOT(P AND Q) equivalent to NOT(P) AND NOT(Q)?" NOT(P AND Q) can be thought of intuitively as "Not both P and Q." Which if you think about, you can see that it would be true if something were P but not Q, Q but not P, and neither P nor Q-- so long as they're not both true at the same time. Now, "NOT(P) AND NOT(Q)" is clearly _only_ true when BOTH P and Q are false. So there are cases where NOT(P AND Q) is true but NOT(P) AND NOT(Q) is false (an example would be True(P) and False(Q)). NOT(P AND Q) does have an equivalence however, according to De Morgan's Law. The NOT can be distributed, but in doing so we have to change the "AND" to an "OR". NOT(P AND Q) is equivalent to NOT(P) OR NOT(Q)


If B is between P and Q?

If B is between P and Q, then: P<B<Q