a2b2
Whenever two or more terms (such as a2) are next to each other, multiplication is implied.
The Pythagorean Theorem (the theorem that the square of the hypotenuse of a right triangle is equal to the sum of the squares of the other two sides) states that a2 times b2 equals c2.
The product of a squared and b squared is equal to (a^2)*(b^2), which can be simplified to a^2 * b^2. This expression represents the result of multiplying a number a by itself (squared) and then multiplying that result by another number b squared. In other words, it is the square of the product of a and b.
Oh, dude, you're hitting me with some math now? Alright, so when you square something, you're just multiplying it by itself. So if you have a squared times b squared, you're basically just multiplying a by itself and then multiplying b by itself, and then you can multiply those results together. It's like math inception, man.
Since a squared plus b squared equals c squared, that is the same as c equals the square root of a squared plus b squared. This can be taken into squaring and square roots to infinity and still equal c, as long as there is the same number of squaring and square roots in the problem. Since this question asks for a and b squared three times, and also three square roots of a and b both, they equal c. Basically, they cancel each other out.
b2 x 2b = 2b3
It is: 2b squared
It is b*b
Well, darling, 5ab squared is simply 5 times a times b squared. It's like saying you've got 5 apples and 2 of them are squared - simple math, really. So, the answer is 5ab squared, no need to overcomplicate things, honey.
b to the fourth power
(bc)2
All the time
The GCF is 6a2b
(X Squared times a) times b
(a+b)^2=a^2+b^2+2ab it should read "the quanitity "a plus b" squared equals a squared plus b squared plus two a times b" See related link below for a picture that shows it graphically.
-b + or - the square root on b squared - 4 times a times c over 2
he made the theorem C squared = A squared + B squared and A squared = C squared - B squared or B squared = C squared - A squared
Since a squared plus b squared equals c squared, that is the same as c equals the square root of a squared plus b squared. This can be taken into squaring and square roots to infinity and still equal c, as long as there is the same number of squaring and square roots in the problem. Since this question asks for a and b squared three times, and also three square roots of a and b both, they equal c. Basically, they cancel each other out.
-2a^2
b2 x 2b = 2b3
54