There are many ways to find the chromatic number. One way is to write the chromatic polynomial and obtain it from that. For example, let's look at a complete graph on 3 points which looks like a triangle. We can color the first vertex in x ways, the second is x-1 ways and the third in x-2 ways. So the chromatic polynomial is C(x)=x(x-1)(x-2) not the smallest natural number, N, such that C(N) is not equal to zero is the chromatic number. So in this case it is 3. This number tells us the we can color the graph with 3 different colors and have no vertices with the same color. Any smaller number of colors, say 2 would not work.So the answer is find C(x) the chromatic polynomial and then find the smallest natural number such that C(x) is not zero. There are many other methods to find it, but that one is sometimes the simplest.
The degree is equal to the maximum number of times the graph can cross a horizontal line.
A value of the variable when the polynomial has a value of 0. Equivalently, the value of the variable when the graph of the polynomial intersects the variable axis (usually the x-axis).
For a line, this is the x-intercept. For a polynomial, these points are the roots or solutions of the polynomial at which y=0.
The order of the polynomial (the highest power) and the coefficient of the highest power.
There are many ways to find the chromatic number. One way is to write the chromatic polynomial and obtain it from that. For example, let's look at a complete graph on 3 points which looks like a triangle. We can color the first vertex in x ways, the second is x-1 ways and the third in x-2 ways. So the chromatic polynomial is C(x)=x(x-1)(x-2) not the smallest natural number, N, such that C(N) is not equal to zero is the chromatic number. So in this case it is 3. This number tells us the we can color the graph with 3 different colors and have no vertices with the same color. Any smaller number of colors, say 2 would not work.So the answer is find C(x) the chromatic polynomial and then find the smallest natural number such that C(x) is not zero. There are many other methods to find it, but that one is sometimes the simplest.
Either graph the polynomial on graph paper manually or on a graphing calculator. If it is a "y=" polynomial, then the zeroes are the points or point where the polynomial touches the x-axis. If it is an "x=" polynomial, then the zeroes are the points or point where the polynomial touches the y-axis. If it touches neither, then it has no zeroes.
The zeros of a polynomial represent the points at which the graph crosses (or touches) the x-axis.
false
Not quite. The polynomial's linear factors are related - not equal to - the places where the graph meets the x-axis. For example, the polynomial x2 - 5x + 6, in factored form, is (x - 2) (x - 3). In this case, +2 and +3 are "zeroes" of the polynomial, i.e., the graph crosses the x-axis. That is, in an x-y graph, y = 0.
no
A parabola.
The graph of a polynomial in X crosses the X-axis at x-intercepts known as the roots of the polynomial, the values of x that solve the equation.(polynomial in X) = 0 or otherwise y=0
The zero of a polynomial in the variable x, is a value of x for which the polynomial is zero. It is a value where the graph of the polynomial intersects the x-axis.
What is the interpretation of a graph quadratic polynomial
2
A polynomial function have a polynomial graph. ... That's not very helpful is it, but the most common formal definition of a function is that it is its graph. So, I can only describe it. A polynomial graph consists of "bumps", formally called local maxima and minima, and "inflection points", where concavity changes. What's more? They numbers and shape varies a lot for different polynomials. Usually, the poly with higher power will have more "bumps" and inflection points, but it is not a absolute trend. The best way to analyze the graph of a polynomial is through Calculus.