A real root is when a quadratic equation, or the graph of a polynomial, crosses the x axis, or when the y coordinate is equal to 0. On any polynomial to the degree of two, when graphed the line follows a smooth arc in the shape of a "U" or and upside down "U". Since there are only two prongs to the parabola, or arc, it can only cross the x axis twice, if at all. So there can only be 2 real roots.
Sort of... but not entirely. Assuming the polynomial's coefficients are real, the polynomial either has as many real roots as its degree, or an even number less. Thus, a polynomial of degree 4 can have 4, 2, or 0 real roots; while a polynomial of degree 5 has either 5, 3, or 1 real roots. So, polynomial of odd degree (with real coefficients) will always have at least one real root. For a polynomial of even degree, this is not guaranteed. (In case you are interested about the reason for the rule stated above: this is related to the fact that any complex roots in such a polynomial occur in conjugate pairs; for example: if 5 + 2i is a root, then 5 - 2i is also a root.)
A third-degree equation has, at most, three roots. A fourth-degree polynomial has, at most, four roots. APEX 2021
In the complex field, a polynomial of degree n (the highest power of the variable) has n roots. Some of these roots may be multiple roots. However, if the domain is the real numbers (or a subset) then there is no easy way. The degree only gives the maximum number of roots - there may be no real root. For example x2 + 1 = 0.
It can have 1, 2 or 3 unique roots.
Such an equation has a total of six roots; the number of real roots must needs be even. Thus, depending on the specific equation, the number of real roots may be zero, two, four, or six.
In answering this question it is important that the roots are counted along with their multiplicity. Thus a double root is counted as two roots, and so on. The degree of a polynomial is exactly the same as the number of roots that it has in the complex field. If the polynomial has real coefficients, then a polynomial with an odd degree has an odd number of roots up to the degree, while a polynomial of even degree has an even number of roots up to the degree. The difference between the degree and the number of roots is the number of complex roots which come as complex conjugate pairs.
A third degree polynomial could have one or three real roots.
Sort of... but not entirely. Assuming the polynomial's coefficients are real, the polynomial either has as many real roots as its degree, or an even number less. Thus, a polynomial of degree 4 can have 4, 2, or 0 real roots; while a polynomial of degree 5 has either 5, 3, or 1 real roots. So, polynomial of odd degree (with real coefficients) will always have at least one real root. For a polynomial of even degree, this is not guaranteed. (In case you are interested about the reason for the rule stated above: this is related to the fact that any complex roots in such a polynomial occur in conjugate pairs; for example: if 5 + 2i is a root, then 5 - 2i is also a root.)
4, the same as the degree of the polynomial.
A third-degree equation has, at most, three roots. A fourth-degree polynomial has, at most, four roots. APEX 2021
In the complex field, a polynomial of degree n (the highest power of the variable) has n roots. Some of these roots may be multiple roots. However, if the domain is the real numbers (or a subset) then there is no easy way. The degree only gives the maximum number of roots - there may be no real root. For example x2 + 1 = 0.
It can have 1, 2 or 3 unique roots.
The order of degree of a polynomial is the highest power of the variable in the polynomial. For example, in the polynomial 2x^3 + 5x^2 - x + 7, the order of degree is 3 because the term with the highest power of x is x^3. This determines the overall complexity and behavior of the polynomial, helping to understand its characteristics such as end behavior and number of roots.
Four.Four.Four.Four.
Such an equation has a total of six roots; the number of real roots must needs be even. Thus, depending on the specific equation, the number of real roots may be zero, two, four, or six.
5, Using complex numbers you will always get 5 roots.
1