Best Answer

x= ay² + by + c Apex :3

Q: What is the standard form of the equation of a parabola that opens left or right?

Write your answer...

Submit

Still have questions?

Continue Learning about Algebra

when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up

Let's say you want the standard form of the equation x2 + 10x + y + 20 = 0. x2 + 10x + y + 20 = 0 (add 5 and subtract y to both sides) x2 + 10x + 25 = -y + 5 (form the square to the left, and factor out -1 to the right) (x + 5)2 = -(y - 5) which is in the standard form (x - h)2 = 4p(y - k), where (h, k) = (-5, 5) is the vertex, and 4p = -1 yields p = -1/4, so the parabola opens downward.

You write the equation in such a way that you have zero on the right side. Then you graph the expression on the left side of the equal sign, and check where it touches the x-axis. Note that this method works for most common equations.

your answer would actually be x=a(y-v)2+h

right

Related questions

right

left

when you have y=+/-x2 +whatever, the parabola opens up y=-(x2 +whatever), the parabola opens down x=+/-y2 +whatever, the parabola opens right x=-(y2 +whatever), the parabola opens left so, your answer is up

It is a square root mapping. This is not a function since it is a one-to-many mapping.

A parabola with an equation, y2 = 4ax has its vertex at the origin and opens to the right. It's not just the '4' that is important, it's '4a' that matters. This type of parabola has a directrix at x = -a, and a focus at (a, 0). By writing the equation as it is, the position of the directrix and focus are readily identifiable. For example, y2 = 2.4x doesn't say a great deal. Re-writing the equation of the parabola as y2 = 4*(0.6)x tells us immediately that the directrix is at x = -0.6 and the focus is at (0.6, 0)

Nose points right, opens to the left.

True

Solution 1Start by putting the parabola's equation into the form y = ax2 + bx + c if it opens up or down,or x = ay2 + by + c if it is opens to the left or right,where a, b, and c are constants.The x-value for the vertex is -(b/2a). You can use this x-value to solve for the y-value by substituting the x value in the original quadratic equation.Solution 2Put the parabola's equation into this form: y - k = 4p(x - h)2or x - h = 4p(y - k)2You just need to simplify the equation until it looks like this. The vertex is located at the coordinates (h,k). (p is for the focus, but that isn't important as long as you know h and k.)

There are several ways of defining a parabola. Here are some:Given a straight line and a point not on that line, a parabola is the locus of all points that are equidistant from that point (the focus) and the line (directrix).A parabola is the intersection of the surface of a right circular cone and a plane parallel to a generating line of that surface.A parabola is the graph of a quadratic equation.

right apex. hope that helps

You were going along pretty good until you hit the words "to the second power". Right there, you no longer have a 'linear' equation. The question looks like you're trying to say one of the following two equations: Either x + y2 = 25 or (x + y)2 = 25. Neither is a linear equation. Each is the equation of a parabola.

Let's say you want the standard form of the equation x2 + 10x + y + 20 = 0. x2 + 10x + y + 20 = 0 (add 5 and subtract y to both sides) x2 + 10x + 25 = -y + 5 (form the square to the left, and factor out -1 to the right) (x + 5)2 = -(y - 5) which is in the standard form (x - h)2 = 4p(y - k), where (h, k) = (-5, 5) is the vertex, and 4p = -1 yields p = -1/4, so the parabola opens downward.