It has one real solution.
a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.
The equation has two real solutions.
The two solutions are coincident.
True Yes. Although the term 'quad' stands for four, a quadratic equation is a polynomial of second degree.
The quadratic formula can be used to find the solutions of a quadratic equation - not a linear or cubic, or non-polynomial equation. The quadratic formula will always provide the solutions to a quadratic equation - whether the solutions are rational, real or complex numbers.
It will then have 2 different roots If the discriminant is zero than it will have have 2 equal roots
a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.a = 0. That is because a = 0 implies that there is no quadratic term and so the equation is not a quadratic!There may be some who make claims depending on the value of the discriminant (which is b2-4ac). That is true only for elementary mathematics. In more advanced mathematics (complex analysis), the quadratic equation can be used in all cases except when a = 0: the value of the discriminant is irrelevant.
It discriminates between the conditions in which a quadratic equation has 0, 1 or 2 real roots.
The discriminant must be a perfect square or a square of a rational number.
The equation must be written in the form ( ax^2 + bx + c = 0 ), where ( a \neq 0 ). This is the standard form of a quadratic equation. If the equation is not in this form, you may need to rearrange it before applying the quadratic formula.
In that case, the discriminant is not a perfect square.
There are two complex solutions.
That its roots (solutions) are coincident.
That its roots (solutions) are coincident.
C
It is finding the values of the variable that make the quadratic equation true.
it has one real solution