Yes, it can.
It is not possible to answer the question since a non linear sequence could be geometric, exponential, trigonometric etc.
No, they do not. If the first term is negative, they always decrease.
Well, well, well, look who's getting fancy with geometric sequences! When the ratio between consecutive terms is "r," each term is found by multiplying the previous term by "r." So, in simpler terms, if you have a sequence like 2, 4, 8, 16, the ratio between consecutive terms is 2. Math can be sassy too, honey!
nth term is n squared plus three
9, 17, 25, 33, 41
Yes, that's what a geometric sequence is about.
The given sequence is a geometric sequence where each term is multiplied by 2 to get the next term. The first term (a) is 4, and the common ratio (r) is 2. The nth term of a geometric sequence can be found using the formula ( a_n = a \cdot r^{(n-1)} ). Therefore, the nth term of this sequence is ( 4 \cdot 2^{(n-1)} ).
2946
1240
A sequence is geometric if each term is found by mutiplying the previous term by a certain number (known as the common ratio). 2,4,8,16, --> here the common ratio is 2.
You mean what IS a geometric sequence? It's when the ratio of the terms is constant, meaning: 1, 2, 4, 8, 16... The ratio of one term to the term directly following it is always 1:2, or .5. So like, instead of an arithmetic sequence, where you're adding a specific amount each time, in a geometric sequence, you're multiplying by that term.
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by 10.
The sequence 2, 4, 8, 16 is a geometric sequence. In a geometric sequence, each term is obtained by multiplying the previous term by a constant factor. In this case, each term is multiplied by 2 (2 × 2 = 4, 4 × 2 = 8, 8 × 2 = 16).
In an arithmetic sequence the same number (positive or negative) is added to each term to get to the next term.In a geometric sequence the same number (positive or negative) is multiplied into each term to get to the next term.A geometric sequence uses multiplicative and divisive formulas while an arithmetic uses additive and subtractive formulas.
1
-5,120
A geometric sequence is a sequence of numbers where each term after the first is found by multiplying the previous term by a fixed, non-zero number called the common ratio. For example, in the sequence 2, 6, 18, 54, the common ratio is 3. The general form of a geometric sequence can be expressed as ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number.