-5,120
It is 4374
a = -4 r = -3
Find the 7th term of the geometric sequence whose common ratio is 1/2 and whose first turn is 5
The formula to find the sum of a geometric sequence is adding a + ar + ar2 + ar3 + ar4. The sum, to n terms, is given byS(n) = a*(1 - r^n)/(1 - r) or, equivalently, a*(r^n - 1)/(r - 1)
To find the fifth term of the geometric sequence 8, 0, 4, 0, 20, we need to identify a pattern. The terms appear to alternate between zero and other values, but there might be a misunderstanding since the terms provided don't follow a consistent geometric ratio. Assuming the sequence is correct as given, the fifth term is 20.
It is 0.2
To express a geometric sequence in function notation, identify the first term (a) and the common ratio (r) of the sequence. The nth term of a geometric sequence can be represented as ( f(n) = a \cdot r^{(n-1)} ), where ( n ) is the term number. For example, if the first term is 2 and the common ratio is 3, the function notation would be ( f(n) = 2 \cdot 3^{(n-1)} ). This allows you to calculate any term in the sequence using the function ( f(n) ).
To find the 6th term of a geometric sequence, you need the first term and the common ratio. The formula for the nth term in a geometric sequence is given by ( a_n = a_1 \cdot r^{(n-1)} ), where ( a_1 ) is the first term, ( r ) is the common ratio, and ( n ) is the term number. Please provide the first term and common ratio so I can calculate the 6th term for you.
nth term Tn = arn-1 a = first term r = common factor
Divide any term in the sequence by the previous term. That is the common ratio of a geometric series. If the series is defined in the form of a recurrence relationship, it is even simpler. For a geometric series with common ratio r, the recurrence relation is Un+1 = r*Un for n = 1, 2, 3, ...
To find the common ratio of a geometric sequence, we divide each term by its preceding term. However, the sequence provided (12, -14, 18, -116) does not exhibit a consistent ratio, as the ratios between consecutive terms are -14/12, 18/-14, and -116/18, which are not equal. Therefore, this sequence is not geometric and does not have a common ratio.
The term "common ratio" typically refers to the ratio between consecutive terms in a geometric sequence. However, -1148 by itself does not provide enough context to determine a common ratio, as it is a single number rather than a sequence. If you have a specific geometric sequence in mind, please provide the terms, and I can help you find the common ratio.