No, they do not. If the first term is negative, they always decrease.
What is the sum of the first 27 terms of the geometric sequence -3, 3, - 3, 3, . . . ?
An arithmetic sequence does not have a constant rate of increase or decrease between successive terms, so it cannot be called anything!The constant increase or decrease is called the common difference.
Well, well, well, look who's getting fancy with geometric sequences! When the ratio between consecutive terms is "r," each term is found by multiplying the previous term by "r." So, in simpler terms, if you have a sequence like 2, 4, 8, 16, the ratio between consecutive terms is 2. Math can be sassy too, honey!
It could be either. The answer depends on how many terms if any are between 48 and 192.
Arithmetic Sequence
FALSE (Apex)
yes
Yes, that's what a geometric sequence is about.
In a geometric sequence where the terms always increase, the common ratio ( r ) must be greater than 1. This means that each term is obtained by multiplying the previous term by this positive ratio. For example, if the first term is ( a ) and the common ratio is ( r ), the sequence would look like ( a, ar, ar^2, ar^3, \ldots ) with each term growing larger than the last. Thus, the sequence exhibits exponential growth as long as the common ratio remains above 1.
A descending geometric sequence is a sequence in which the ratio between successive terms is a positive constant which is less than 1.
A static sequence: for example a geometric sequence with common ratio = 1.
You mean what IS a geometric sequence? It's when the ratio of the terms is constant, meaning: 1, 2, 4, 8, 16... The ratio of one term to the term directly following it is always 1:2, or .5. So like, instead of an arithmetic sequence, where you're adding a specific amount each time, in a geometric sequence, you're multiplying by that term.
Ratio
It is 4374
The difference between succeeding terms in a sequence is called the common difference in an arithmetic sequence, and the common ratio in a geometric sequence.
The terms are: 4, 8 and 16
The sequence 2, 3, 5, 8, 12 is neither arithmetic nor geometric. In an arithmetic sequence, the difference between consecutive terms is constant, while in a geometric sequence, the ratio between consecutive terms is constant. In this sequence, there is no constant difference or ratio between consecutive terms, so it does not fit the criteria for either type of sequence.