Y=0 is nothing more than a horizontal line along the X axis.
If you mean y = 2^x, then no, it is not a linear equation. This is an exponential equation. The graph of this exponential equation would start out near zero on the left-hand side (there is a horizontal asymptote at y = 0) and would gradually increase as you move to the right: overall, it has a curved shaped. If you mean y = 2x, then yes, it is a linear equation.
A horizontal line crossing the y axis at 3.
It remains a vertical asymptote. Instead on going towards y = + infinity it will go towards y = - infinity and conversely.
Asymptote's occur when your equation has a denominator of zero Holes may occur when your equation has both a numerator and denominator of zero So... The equation for the denominator equals zero is: x2-x-2 = 0 The equation for both the numerator and denominator equals zero is x - 2 = x2-x-2 = 0 For interests sake... lets solve it. ---- x2-x-2 = 0 (x+1)(x-2) = 0 x = -1, 2 x - 2 = x2-x-2 = 0 x - 2 = 0 x = 2 A vertical asymptote occurs at x = -1 A vertical asymptote or hole may appear at x = 2
It is y = 0
y = x / (x^2 + 2x + 1) The horizontal asymptote is y = 0
2x-2/x^2+3x-4
y = 4(2x) is an exponential function. Domain: (-∞, ∞) Range: (0, ∞) Horizontal asymptote: x-axis or y = 0 The graph cuts the y-axis at (0, 4)
True
Yes, the asymptote is x = 0. In order for logarithmic equation to have an asymptote, the value inside log must be 0. Then, 5x = 0 → x = 0.
y = 1. When the degree of your numerator is the same with the degree of your denominator, then y = the ratio of the leading coefficients of the numerator and denominator is the horizontal asymptote.
The horizontal asymptote is what happens when x really large. To start with get rid of all the variables except the ones with the biggest exponents. When x is really large, they are the only ones that will matter. If the remaining exponents are the same, then the ratio of those coefficients tell you where the horizontal asymptote is. For example if you have 2x3/3x3, then the ratio is 2/3 and the asymptote is f(x)=2/3 or y=2/3. If the exponent in the denominator is bigger, than y=0 is the horizontal asymptote. If the exponent in the numerator is bigger, than there is no horizontal asymptote.
An asymptote is the tendency of a function to approach infinity as one of its variable takes certain values. For example, the function y = ex has a horizontal asymptote at y = 0 because when x takes extremely big, negative values, y approaches a fixed value : 0. Asymptotes are related to limits.
One point on a logarithmic graph is not sufficient to determine its parameters. It is, therefore, impossible to answer the question.
Y = 4 is a horizontal line with zero slope. dy/dx = 0
Zero. Y=4 is a horizontal line.