answersLogoWhite

0

X T in RN

User Avatar

Anonymous

16y ago
Updated: 4/28/2022

After about 10 hours of busting my head I figured it out. X (X)= T (ten) in RN (Roman Numberals). Hope I helped you out.

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Algebra

Prove that the Jacobi iteration method applying to Ax=b is convergent for any initial x (0), provided that A is strictly diagonally dominant?

Answer: The Jacobi iteration method is an iterative method used to solve a system of linear equations Ax = b. This method is based on the idea that an approximate solution can be obtained by iteratively solving each equation for one of its unknowns while the other unknowns are kept fixed. In order for the Jacobi iteration method to converge, we must prove that it is convergent for any initial x (0) provided that A is strictly diagonally dominant. Let A be an n-by-n matrix and b be a vector in Rn. We assume that A is strictly diagonally dominant. This means that the absolute value of each diagonal element of A is greater than the sum of the absolute values of the non-diagonal elements in the same row. This can be expressed mathematically as: |a_jj| > ∑ |a_ij| , where i ≠ j and i, j = 1,2, ..., n. Now, let x(0) be the initial vector in Rn. The Jacobi iteration method for solving Ax = b is given by: x_j^{k+1} = (b_j - ∑_{i=1,i≠j}^{n}a_ijx_i^k) / a_jj , where j = 1,2, ..., n. We can prove that the Jacobi iteration method is convergent for any initial x (0), provided that A is strictly diagonally dominant, by using the following theorem. Theorem: Let A be an n-by-n matrix and b be a vector in Rn. Assume that A is strictly diagonally dominant and let x(0) be the initial vector in Rn. Then, the Jacobi iteration method is convergent for any initial x (0). Proof: We will prove the theorem by using the Banach fixed point theorem. Let X be the set of all vectors x in Rn and define a mapping T : X → X as follows: T(x) = (b_1 - ∑{i=1,i≠1}^{n}a_1ix_i) / a_11 , (b_2 - ∑{i=1,i≠2}^{n}a_2ix_i) / a_22 , ... , (b_n - ∑_{i=1,i≠n}^{n}a_nix_i) / a_nn . We will prove that T is a contraction mapping. To do this, we need to show that there exists a constant c >= 0 such that for all x, y in X, we have ||T(x) - T(y)|| ≤ c||x - y|| , where ||.|| is the Euclidean norm. From the definition of T, we have T(x) - T(y) = (b_1 - ∑{i=1,i≠1}^{n}a_1ix_i) / a_11 - (b_1 - ∑{i=1,i≠1}^{n}a_1iy_i) / a_11 , (b_2 - ∑{i=1,i≠2}^{n}a_2ix_i) / a_22 - (b_2 - ∑{i=1,i≠2}^{n}a_2iy_i) / a_22 , ... , (b_n - ∑{i=1,i≠n}^{n}a_nix_i) / a_nn - (b_n - ∑{i=1,i≠n}^{n}a_niy_i) / a_nn . Now, we can use the triangle inequality to get ||T(x) - T(y)|| ≤ ∑{j=1}^{n} |(b_j - ∑{i=1,i≠j}^{n}a_jix_i) / a_jj - (b_j - ∑_{i=1,i≠j}^{n}a_jiy_i) / a_jj| . Using the definition of T and the fact that A is strictly diagonally dominant, we can further simplify this to ||T(x) - T(y)|| ≤ ∑{j=1}^{n} |a_jj(x_j - y_j)| / |a_jj| ≤ ∑{j=1}^{n} |a_jj||x_j - y_j| / |a_jj| ≤ ∑_{j=1}^{n} |x_j - y_j| = ||x - y|| . Thus, we have shown that ||T(x) - T(y)|| ≤ ||x - y||, which implies that T is a contraction mapping. Therefore, by the Banach fixed point theorem, the Jacobi iteration method is convergent for any initial x (0). This completes the proof.


Factor 4x-4y-ty plus xt?

4x-4y-ty+xt = 4x+tx-4y-ty = x(4+t) - y(4+t) = (x-y)*(4+t)


What is 3 X r X 4 X t?

3 · r · 4 · t = 12 r t


What is the answer to this equation solve the equation w equals 2 pi StartRoot StartFraction x Over t EndFraction EndRoot for the variable x Assume all other letters represent nonzero constants?

w=2*pi*sqr(x/t) First divide each side by 2*pi w/(2pi)=sqr(x/t) Next square both sides (w/2pi)^2=x/t Next multiply both sides by t t(w/2pi)^2=x


Can you help solve the equation w equals 3 pi StartRoot StartFraction x Over t EndFraction EndRoot for the variable x Assume all other letters represent nonzero constants?

w=3pi*sqr(x/t) First divide each side by 3pi w/3pi=sqr(x/t) Next square both sides. (w/3pi)^2=x/t Next multiply both sides by t t(w/3pi)^2=x

Related Questions

X equals T in RN. What does this mean?

X= Ten in roman numerals


Who makes more rn's or x-ray tech?

RN's


The polynomial given roots?

Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.


What does T RN mean in brain teasers?

T RN means no "u" turn, just the word "turn" without a "u".


What does T RN mean?

If your talking on twitter it means "Trend Right Now"


What was the beginning radionuclide (X) X Rn plus 2He4?

You think probable to radium-226.


What is 2 x t plus 35 x t?

2 x t + 35 x t 2t + 35t 37t


How do you solve this For a polynomial of degree n express the coefficient of x to the n-1 power and the constant coefficient in terms of the zeros of the polynomial?

If the roots are r1, r2, r3, ... rn, then coeff of x^(n-1) = -(r1+r2+r3+...+rn) and constant coeff = (-1)^n*r1*r2*r3*...*rn.


How do make a enchantment table in minecraft?

x= diamond o o= book x t x t= obsidian t t t


What is the equation for y(x, t) in terms of the amplitude a, angular frequency k, and the variables x and t in the function y(x, t) acos(kx - t)?

The equation for y(x, t) in terms of the amplitude a, angular frequency k, and the variables x and t is y(x, t) acos(kx - t).


What is the answer to 7t equals x for t?

If: 7t = x Then: t = x/7


Prove that the Jacobi iteration method applying to Ax=b is convergent for any initial x (0), provided that A is strictly diagonally dominant?

Answer: The Jacobi iteration method is an iterative method used to solve a system of linear equations Ax = b. This method is based on the idea that an approximate solution can be obtained by iteratively solving each equation for one of its unknowns while the other unknowns are kept fixed. In order for the Jacobi iteration method to converge, we must prove that it is convergent for any initial x (0) provided that A is strictly diagonally dominant. Let A be an n-by-n matrix and b be a vector in Rn. We assume that A is strictly diagonally dominant. This means that the absolute value of each diagonal element of A is greater than the sum of the absolute values of the non-diagonal elements in the same row. This can be expressed mathematically as: |a_jj| > ∑ |a_ij| , where i ≠ j and i, j = 1,2, ..., n. Now, let x(0) be the initial vector in Rn. The Jacobi iteration method for solving Ax = b is given by: x_j^{k+1} = (b_j - ∑_{i=1,i≠j}^{n}a_ijx_i^k) / a_jj , where j = 1,2, ..., n. We can prove that the Jacobi iteration method is convergent for any initial x (0), provided that A is strictly diagonally dominant, by using the following theorem. Theorem: Let A be an n-by-n matrix and b be a vector in Rn. Assume that A is strictly diagonally dominant and let x(0) be the initial vector in Rn. Then, the Jacobi iteration method is convergent for any initial x (0). Proof: We will prove the theorem by using the Banach fixed point theorem. Let X be the set of all vectors x in Rn and define a mapping T : X → X as follows: T(x) = (b_1 - ∑{i=1,i≠1}^{n}a_1ix_i) / a_11 , (b_2 - ∑{i=1,i≠2}^{n}a_2ix_i) / a_22 , ... , (b_n - ∑_{i=1,i≠n}^{n}a_nix_i) / a_nn . We will prove that T is a contraction mapping. To do this, we need to show that there exists a constant c >= 0 such that for all x, y in X, we have ||T(x) - T(y)|| ≤ c||x - y|| , where ||.|| is the Euclidean norm. From the definition of T, we have T(x) - T(y) = (b_1 - ∑{i=1,i≠1}^{n}a_1ix_i) / a_11 - (b_1 - ∑{i=1,i≠1}^{n}a_1iy_i) / a_11 , (b_2 - ∑{i=1,i≠2}^{n}a_2ix_i) / a_22 - (b_2 - ∑{i=1,i≠2}^{n}a_2iy_i) / a_22 , ... , (b_n - ∑{i=1,i≠n}^{n}a_nix_i) / a_nn - (b_n - ∑{i=1,i≠n}^{n}a_niy_i) / a_nn . Now, we can use the triangle inequality to get ||T(x) - T(y)|| ≤ ∑{j=1}^{n} |(b_j - ∑{i=1,i≠j}^{n}a_jix_i) / a_jj - (b_j - ∑_{i=1,i≠j}^{n}a_jiy_i) / a_jj| . Using the definition of T and the fact that A is strictly diagonally dominant, we can further simplify this to ||T(x) - T(y)|| ≤ ∑{j=1}^{n} |a_jj(x_j - y_j)| / |a_jj| ≤ ∑{j=1}^{n} |a_jj||x_j - y_j| / |a_jj| ≤ ∑_{j=1}^{n} |x_j - y_j| = ||x - y|| . Thus, we have shown that ||T(x) - T(y)|| ≤ ||x - y||, which implies that T is a contraction mapping. Therefore, by the Banach fixed point theorem, the Jacobi iteration method is convergent for any initial x (0). This completes the proof.