5/15 = 1/3 = 33 and 1/3 percent
A bag of marbles contains 13 marbles. 5 Blue, 3 Yellow, 4 Green and 1 Red. Leave all answers as a ratio in lowest terms. 18 points On a single draw, what is the probability of drawing a yellow marble? What is the probability of not drawing a yellow marble? What are the odds in favor of drawing a blue marble? What is the probability of drawing a red or yellow marble? What is the probability of drawing a purple marble? If you had to bet on drawing a marble of a certain color what color would you not choose?
Probability of drawing a red marble = 4/16 = 1/4 Probability of drawing not a red marble = 1 - 1/4 = 3/4
Since the box contains 16 marbles, seven of them white, then the probability of drawing one white marble is 7/16. If you replace the marble and draw again, the probability of drawing another white marble is still 7/16. The net probability of drawing two white marbles, while replacing the first, is 49/256.
There are a total of 25 Marbles The chances are 3 out of 25 drawing a Red marble. 3/25 = 12% chance of drawing a red marble
The answer is dependent on whether of not you replace the marbles in the jar. If you do, the probability of drawing a red marble is 9 in 15 or 60%, every time. If you do not replace the marbles, the probability of drawing a red marble is 2 in 8 or 25%.
To calculate the probability of not drawing a green marble, first determine the total number of marbles and the number of green marbles. The probability of not drawing a green marble is then given by the ratio of the number of non-green marbles to the total number of marbles. This can be expressed as: [ P(\text{not green}) = \frac{\text{Number of non-green marbles}}{\text{Total number of marbles}}. ] Without specific numbers, the exact probability cannot be computed.
The theoretical probability of randomly drawing a green marble can be calculated by dividing the number of green marbles by the total number of marbles in the bag. In this case, there are 12 green marbles out of a total of 5 red marbles + 8 blue marbles + 12 green marbles, which is 25 marbles in total. Therefore, the theoretical probability of drawing a green marble is 12/25 or 48%.
There would be a 7/19 or 36.84% chance of drawing a blue marble from the bag.
It depends on how many marbles of each colour you have....
Probability of drawing a blue marble first is 4 in 8 (or 50%) Probability of drawing a blue marble second is 3 in 7 (or 42.85714%) Probablility of drawing blue then blue is the two above multiplied 0.5 * 0.4285714 Which is 0.212142407 or 21% or One in Five.
Suppose probability of drawing a red marble is p. Then p = 2*(1 - p) that is p = 2 - 2p or p = 2/3 So 2/3 of the 24 marbles are red 24*(2/3) = 16 red marbles.
The probability of drawing a white marble is .46