Want this question answered?
Be notified when an answer is posted
your probability would be 13/13. you would have a 100 percent chance of getting a green marble
Probability of drawing a red marble = 4/16 = 1/4 Probability of drawing not a red marble = 1 - 1/4 = 3/4
Probability of drawing a blue marble first is 4 in 8 (or 50%) Probability of drawing a blue marble second is 3 in 7 (or 42.85714%) Probablility of drawing blue then blue is the two above multiplied 0.5 * 0.4285714 Which is 0.212142407 or 21% or One in Five.
4 out of 7
the probability is you'd get a green marble any other color is impossible. So, the probability is certain
your probability would be 13/13. you would have a 100 percent chance of getting a green marble
Probability of drawing a red marble = 4/16 = 1/4 Probability of drawing not a red marble = 1 - 1/4 = 3/4
The theoretical probability of randomly drawing a green marble can be calculated by dividing the number of green marbles by the total number of marbles in the bag. In this case, there are 12 green marbles out of a total of 5 red marbles + 8 blue marbles + 12 green marbles, which is 25 marbles in total. Therefore, the theoretical probability of drawing a green marble is 12/25 or 48%.
Probability of drawing a blue marble first is 4 in 8 (or 50%) Probability of drawing a blue marble second is 3 in 7 (or 42.85714%) Probablility of drawing blue then blue is the two above multiplied 0.5 * 0.4285714 Which is 0.212142407 or 21% or One in Five.
To calculate the probability of not drawing two green marbles, we first find the probability of drawing a green marble on the first draw, which is 5/20 since there are 5 green marbles out of a total of 20 marbles. The probability of not drawing a green marble on the first draw is 1 - 5/20 = 15/20. Since the marbles are replaced, the probability of not drawing a green marble on the second draw is also 15/20. Therefore, the probability of not drawing two green marbles is (15/20) * (15/20) = 225/400 = 9/16 or 56.25%.
4 out of 7
The probability of drawing a white marble is .46
The probability of drawing two reds, with replacement, is the same as the probability of drawing a red, times itself. So: P(drawing two reds) = P(drawing a red)2 = (12/(2 + 12 + 6))2 = (12/20)2 = (3/5)2 = 9/25
The answer is dependent on whether of not you replace the marbles in the jar. If you do, the probability of drawing a red marble is 9 in 15 or 60%, every time. If you do not replace the marbles, the probability of drawing a red marble is 2 in 8 or 25%.
It depends on how many marbles of each colour you have....
the probability is you'd get a green marble any other color is impossible. So, the probability is certain
There are a total of 25 Marbles The chances are 3 out of 25 drawing a Red marble. 3/25 = 12% chance of drawing a red marble