Descartes' rule of signs (see related link) can help you determine the maximum number of real roots. If the polynomial is odd powered, then there will be at least one real root. Any even powered polynomial can be factored into a bunch of quadratics [though they may not be rational or even pretty], and any odd-powered polynomial can be factored into a bunch of quadratics and one linear (this one would have the real root). So the quadratics may have pairs of real or complex roots (having an imaginary component).To clarify, when I say complex, I'm referring to the fact that there will be an imaginary component to the root, because actually the real numbers is a subset of the set of complex numbers.The order of the polynomial will tell you how many roots it will have. If you can graph the polynomial, then you can see if it crosses the x axis. If it is a 5th order polynomial, and crosses the x axis 3 times, then there are 3 real roots (the other two roots are complex).
13 is not a polynomial.
A single polynomial cannot have a greatest commonfactor. There is nothing that it will be in common with!
a
Rational zero test cannot be used to find irrational roots as well as rational roots.
Factors
Do mean find the polynomial given its roots ? If so the answer is (x -r1)(x-r2)...(x-rn) where r1,r2,.. rn is the given list roots.
graph!
Graph factor
You can find the roots with the quadratic equation (a = 1, b = 3, c = -5).
No integer roots. Quadratic formula gives 1.55 and -0.81 to the nearest hundredth.
you look at the line and see if there are any direct points on the line the slope formula
Yes, easily. Even though the question did not ask what the polynomial was, only if I could find it, here is how you would find the polynomial: Since the coefficients are rational, the complex (or imaginary) roots must form a conjugate pair. That is to say, the two complex roots are + 3i and -3i. The third root is 7. So the polynomial, in factorised form, is (x - 3i)(x + 3i)(x - 7) = (x2 + 9)(x - 7) = x3 - 7x2 + 9x - 63
You can find the roots with the quadratic equation (a = 1, b = 3, c = -5).
Find All Possible Roots/Zeros Using the Rational Roots Test f(x)=x^4-81 ... If a polynomial function has integer coefficients, then every rational zero will ...
You find a multiple of a number by multiplying that number by any whole number.
Descartes' rule of signs (see related link) can help you determine the maximum number of real roots. If the polynomial is odd powered, then there will be at least one real root. Any even powered polynomial can be factored into a bunch of quadratics [though they may not be rational or even pretty], and any odd-powered polynomial can be factored into a bunch of quadratics and one linear (this one would have the real root). So the quadratics may have pairs of real or complex roots (having an imaginary component).To clarify, when I say complex, I'm referring to the fact that there will be an imaginary component to the root, because actually the real numbers is a subset of the set of complex numbers.The order of the polynomial will tell you how many roots it will have. If you can graph the polynomial, then you can see if it crosses the x axis. If it is a 5th order polynomial, and crosses the x axis 3 times, then there are 3 real roots (the other two roots are complex).