1111
In binary: 1111 1111 1111 1111 1111 1111 1111 1111 In octal: 37777777777 In hexadecimal: FFFFFFFF in decimal: 2³² - 1 = 4,294,967,295
The factors of 1111 are: 1, 11, 101, 1111.
10% of 1111 pound = 1111*10/100 = 111.1 pounds
Alright, let's forget the - for a while convert 5 to binary. do this: 5/2=2.5 2/2=1 1/2=0,5 than this: 2.5 absolute value=2 1 absolute value=1 0,5 absolute value=0 finally this 2*2=4 and 5-4=1 2*1=2 and 2-2=0 2*0=0 and 1-0=1 <--(last digit) = 101 complete the binary number by placing a 0= 0101. Now as you might know HW = 2 bytes and 1 byte is 8 bits so to to complete you should place 0000 0000 0000 before your result: 0000 0000 0000 0101 Let's not forget about the - though... you'll have to invert your result 0000 0000 0000 0101= 1111 1111 1111 1010 and increment it by 1=1111 1111 1111 1011 and there is your result... You could check your result this way: 0000 0000 0000 0101 +1111 1111 1111 1011 1 0000 0000 0000 0000 The first bit defines if your decimal has a + or - (1=- and 0=+) The rest is simple... (1111=F) (1111=F) (1111=F) (1011=B)=FFFB (hex HW)
111111 in binary is 255 in decimal which is FF in hexadecimal (i.e. 15 units and 15 16s)
1111
In binary: 1111 1111 1111 1111 1111 1111 1111 1111 In octal: 37777777777 In hexadecimal: FFFFFFFF in decimal: 2³² - 1 = 4,294,967,295
That looks like hexadecimal. Convert each hex digit to 4 binary digits: B = 1011, 2 = 0010, F = 1111, so the final result is 1011 0010 1111.That looks like hexadecimal. Convert each hex digit to 4 binary digits: B = 1011, 2 = 0010, F = 1111, so the final result is 1011 0010 1111.That looks like hexadecimal. Convert each hex digit to 4 binary digits: B = 1011, 2 = 0010, F = 1111, so the final result is 1011 0010 1111.That looks like hexadecimal. Convert each hex digit to 4 binary digits: B = 1011, 2 = 0010, F = 1111, so the final result is 1011 0010 1111.
To store the hexadecimal number FF, we need to convert it to binary first. FF in hexadecimal is equivalent to 1111 1111 in binary, which requires 8 bits to represent. Each hexadecimal digit corresponds to 4 bits in binary, so two hexadecimal digits (FF) require 8 bits to store.
The way I convert between decimal and hexadecimal is to first convert the decimal number to binary: 664062510 = 110010101010011111100012 Then split the binary number into 16-bit (4 digit) chunks: 0110 0101 0101 0011 1111 00012 Next, convert each chunk into a hexadecimal digit: 0110 0101 0101 0011 1111 00012 6 5 5 3 F 1 Finally, put all the digits together: 664062510 = 6553F116
Yes, a byte is 8 bits, and a one hexadecimal digit takes up four bits, so two hexadecimal digits can be stored in a byte. The largest hexadecimal digit is F (which is 15 in base ten.) In base two, this converts to 1111, which takes up four bits, which is why it only takes four bits to store a hexadecimal digit. With 8 bits, two hexadecimal digits can be stored (FF would be 11111111, which is 8 bits), and 8 bits make up a byte. Generally, 4 bits are always used to store a hexadecimal digit, using leading zeros where necessary. For example, the hexadecimal digit 5 would be stored as 0101, and the hexadecimal digits 5A would be stored as 01011010.
1 + 1,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111 = 1,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,111,112 Unless it is binary, in which case: 1 + 111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 1111 1111 1111 1111 = 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
16 is the 4th power of 2. So a hexadecimal number is converted to binary by replacing each hex digit by the 4-bit binary number having the same value. Conversely, in converting binary to hexadecimal, we group every 4 bits starting at the decimal (binary?) point and replace it with the equivalent hex digit. For example, the hexadecimal number 3F9 in binary is 1111111001, because 3 in binary is 11, F (decimal 15) is 1111, and 9 is 1001.
0xc = 1100 Hexadecimal digits use exactly 4 binary digits (bits). The 0x0 to 0xf of hexadecimal map to 0000 to 1111 of binary. Thinking of the hexadecimal digits as decimal numbers, ie 0x0 to 0x9 are 0 to 9 and 0xa to 0xf are 10 to 15, helps with the conversion to binary: 0xc is 12 decimal which is 8 + 4 → 1100 in [4 bit] binary.
39% of 1111= 39% * 1111= 0.39 * 1111= 433.29
Hexadecimal means 16. So that 4 binary bits are represented by a hexadecimal number. 0000 = 0 1000 = 8 0001 = 1 1001 = 9 0010 = 2 1010 = A 0011 = 3 1011 = B 0100 = 4 1100 = C 0101 = 5 1101 = D 0110 = 6 1110 = E 0111 = 7 1111 = F