Chat with our AI personalities
You can find the x-coordinate of it's vertex by taking it's derivative and solving for zero: y = -3x2 + 12x - 5 y' = -6x + 12 0 = -6x + 12 6x = 12 x = 2 Now that we have it's x coordinate, we can plug it back into the original equation to find it's y coordinate: y = -3x2 + 12x - 5 y = -3(2)2 + 12(2) + 5 y = -12 + 24 + 5 y = 17 So the vertex of the parabola y = -3x2 + 12x - 5 occurs at the point (2, 17).
Differentiate the function with respect to x: d/dx (x3 - 2x2 - 5x + 6) = 3x2 - 4x - 5 Set this derivative = 0 and solve. 3x2 - 4x - 5 = 0 implies that x = -0.7863 or 2.1196 (to 4 dp)
Yes. (Assuming that -3x2 is the best representation of 3x2 that this browser will allow.)
6 - y + 5y - 6y = 0 6 = y -5y + 6y 6 = -4y + 6y 6 = 2y 6/2 = y 3 = y
y = -6 is a horizontal line that cuts the y-axis at -6.