1
Chat with our AI personalities
Yes. 'sin2x + cos2x = 1' is one of the most basic identities in trigonometry.
cos2x + sin2x = 1; cosh2x + sinh2x = 1.
It helps to convert everything to cosines, using the Pythagorean formula, i.e., sin2x + cos2x = 1.sin2x + cos x = 0(1 - cos2x) + cos x = 0-cos2x + cos x + 1 = 0cos2x - cos x - 1 = 0Now you can apply the quadratic formula, solving for cos x, and using a = 1, b = -1, c = -1.It helps to convert everything to cosines, using the Pythagorean formula, i.e., sin2x + cos2x = 1.sin2x + cos x = 0(1 - cos2x) + cos x = 0-cos2x + cos x + 1 = 0cos2x - cos x - 1 = 0Now you can apply the quadratic formula, solving for cos x, and using a = 1, b = -1, c = -1.It helps to convert everything to cosines, using the Pythagorean formula, i.e., sin2x + cos2x = 1.sin2x + cos x = 0(1 - cos2x) + cos x = 0-cos2x + cos x + 1 = 0cos2x - cos x - 1 = 0Now you can apply the quadratic formula, solving for cos x, and using a = 1, b = -1, c = -1.It helps to convert everything to cosines, using the Pythagorean formula, i.e., sin2x + cos2x = 1.sin2x + cos x = 0(1 - cos2x) + cos x = 0-cos2x + cos x + 1 = 0cos2x - cos x - 1 = 0Now you can apply the quadratic formula, solving for cos x, and using a = 1, b = -1, c = -1.
cos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan xcos x / (1-sin x) = cos x (1 + sin x) / (1 - sin x) (1 + sin x) = cos x (1 + sin x) / (1 - sin2x) = cos x (1 + sin x) / cos2 x = (1 + sin x) / cos x = sec x + tan x
That is equal to 500(1 + 500) / 2.That is equal to 500(1 + 500) / 2.That is equal to 500(1 + 500) / 2.That is equal to 500(1 + 500) / 2.