answersLogoWhite

0

First see if the integrand ie x2-4 is negative anywhere in the range (it might change sign either side of anyplace where the function is zero, so first solve for x2-4=0).

If it is, reverse the sign in that part. Here if x<2 it is negative so the modulus gives 4-x2. So integrate 4-x2 from 0 to 2 and then integrate x2-4 from 2 to 3. Add the 2 results together.

User Avatar

Wiki User

14y ago

Still curious? Ask our experts.

Chat with our AI personalities

JudyJudy
Simplicity is my specialty.
Chat with Judy
TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake

Add your answer:

Earn +20 pts
Q: Integrate from 0 to 3 for modulus x2-4 dx?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

Why derivative of mod x does not exist graphically?

Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.Because mod(x) is not "smooth at x = 0.Suppose f(x) = mod(x). Then f'(x), if it existed, would be the limit, as dx tends to 0, of [f(x+dx) - f(x)]/dx= limit, as dx tends to o , of [mod(x+dx) - mod(x)]/dxWhen x = 0, this simplifies to mod(dx)/dxIf dx > 0 then f'(x) = -1andif dx < 0 then f'(x) = +1Consequently f'(0) does not exist and hence the derivative of mod(x) does not exist at x = 0.Graphically, it is because at x = 0 the graph is not smooth but has an angle.


Find the exact value of the area under the first arch of fx x sinx The first arch is between x 0 and the first positive x-intercept?

First, find the upper limit of integration by setting xsin(x)=0. It should be pi. Then use integration by parts to integrate xsin(x) from 0 to pi u=x dv=sinx dx du=dx v=-cosx evaluate the -xcosx+sinx from 0 to pi the answer is pi ps webassign sucks


Find the derivative for y equals 5-2x?

7


What is the integral of 2 times 1-x dx with limits 0 to t?

,/` 2(1 - x) dx,/` 2 - 2x dx2x - x2 ...evaluated from 0 to t gives us...2t - t2 - [2(0) - (0)2]2t - t2


What is a derivative of inspired?

Inspired could be though of as an integer as it does not have an exponent. d/dx(inspired) = 0 ==== Or, as a variable with the implied exponent 1. Using the power rule. d/dx(inspired 1 - 1) = inspired0 = 1 ====