answersLogoWhite

0


Best Answer

Calculating trigonometric functions, such as sin, cos, tan, requires some fairly involved calculations. If you don't have a calculator, you best use tables.

Such functions are calculated with Taylor series; for example, if you want to calculate the sine of an angle, and the angle is specified in degrees, multiply by (pi/180) to convert to radians. Then, having the angle "x" in radians, you can use the formula:

sin x = x - x3/3! + x5/5! - x7/7! ...

Similarly:

cos x = 1 - x2/2! + x4/4! - x6/6! ...

Note that, although these are infinite series, they converge pretty quickly, especially for small angles. That means that the individual terms quickly get smaller and smaller.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is their a solution for sin cos tan without calculator?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Calculus

What is the numerical value of cos 35 x sin 24?

In degrees? cos(35˚) = .81915, sin(24˚) = .40673;cos(35˚) * sin(24˚) = .33318In radians? cos(35) = -.90367, sin(24) = -.90558;cos(35) * sin(24) = .81836A calculator will achieve these results faster than wiki.answers. 9 times out of 10, at least.:-)


Solution for tan x plus cot x divided by sec x csc x?

(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.


What is the integral of sin3ycos5ydy?

Best way: Use angle addition. Sin(Ax)Cos(Bx) = (1/2) [sin[sum x] + sin[dif x]], where sum = A+B and dif = A-B To show this, Sin(Ax)Cos(Bx) = (1/2) [sin[(A+B) x] + sin[(A-B) x]] = (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[-Bx]+sin[-Bx]cos[Ax])] Using the facts that cos[-k] = cos[k] and sin[-k] = -sin[k], we have: (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[-Bx]+sin[-Bx]cos[Ax])] (1/2) [(sin[Ax]Cos[Bx]+sin[Bx]cos[Ax]) + (sin[Ax]cos[Bx]-sin[Bx]cos[Ax])] (1/2) 2sin[Ax]Cos[Bx] sin[Ax]Cos[Bx] So, Int[Sin(3y)Cos(5y)dy] = (1/2)Int[Sin(8y)-Sin(2y)dy] = (-1/16) Cos[8y] +1/4 Cos[2y] + C You would get the same result if you used integration by parts twice and played around with trig identities.


Find the derivatives of y equals 2 sin 3x and show the solution?

y = 2 sin 3x y' = 2(sin 3x)'(3x)' y' = 2(cos 3x)(3) y' = 6 cos 3x


How can you prove that 1-2 cosine squared over sine times cosine is equal to tangent minus cotangent?

sin2 + cos2 = 1 So, (1 - 2*cos2)/(sin*cos) = (sin2 + cos2 - 2*cos2)/(sin*cos) = (sin2 - cos2)/(sin*cos) = sin2/(sin*cos) - cos2/(sin*cos) = sin/cos - cos-sin = tan - cot

Related questions

What trigonometric value is equal to cos 62?

The solution is found by applying the definition of complementary trig functions: Cos (&Theta) = sin (90°-&Theta) cos (62°) = sin (90°-62°) Therefore the solution is sin 28°.


Find the value of y if sin y equals cos 48?

y = arcsin( cos 48 ); arcsin may be seen as sin-1 on your calculator.


What is the solution to cos equals sec-sintan?

I'm not really sure what you mean by "the solution", but that equation cos = sec - sintan does simplify down to sin^2 + cos^2 = 1 which so happens to be an identity. I'm not sure if that's what you're looking for, but if it is, here are the steps in simplifying it. 1. Convert sec to 1/cos 2. Convert tan into sin/cos and multiply it by sin sintan = sin(sin/cos) = (sin^2)/cos You then have cos = 1/cos - (sin^2/cos) 3. Multiply everything by cos cos^2 = 1 - sin^2 4. And finally, send the sin^2 over to the left side by adding it (since it is being subracted on the right) You should see this sin^2 + cos^2 = 1 which is an identity.


What is the numerical value of cos 35 x sin 24?

In degrees? cos(35˚) = .81915, sin(24˚) = .40673;cos(35˚) * sin(24˚) = .33318In radians? cos(35) = -.90367, sin(24) = -.90558;cos(35) * sin(24) = .81836A calculator will achieve these results faster than wiki.answers. 9 times out of 10, at least.:-)


Solution for tan x plus cot x divided by sec x csc x?

(tan x + cot x)/sec x . csc x The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form. Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x The solution is: [(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x) [(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x) then sin x. sin x + cos x . cos x sin2x+cos2x =1 The answer is 1.


What is cos on a calculator mean?

Cos is short for Cosine ( Complementary Sine) Similrly Sin is short for Sine Tan is short for Tangent.


Verify that sin minus cos plus 1 divided by sin plus cos subtract 1 equals sin plus 1 divided by cos?

[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,


How do you put sec in a TI 84 calculator?

For any calculator Sec(Secant) = 1/Cos Csc (Cosecant) = 1/ Sin Cot (Cotangent) = 1/Tan


How do you prove this trigonometric relationship sin3A equals 3sinA cos 2 A - sin 3 A?

sin(3A) = sin(2A + A) = sin(2A)*cos(A) + cos(2A)*sin(A)= sin(A+A)*cos(A) + cos(A+A)*sin(A) = 2*sin(A)*cos(A)*cos(A) + {cos^2(A) - sin^2(A)}*sin(A) = 2*sin(A)*cos^2(A) + sin(a)*cos^2(A) - sin^3(A) = 3*sin(A)*cos^2(A) - sin^3(A)


What is the solution to sec plus tan equals cos over 1 plus sin?

sec + tan = cos /(1 + sin) sec and tan are defined so cos is non-zero. 1/cos + sin/cos = cos/(1 + sin) (1 + sin)/cos = cos/(1 + sin) cross-multiplying, (1 + sin)2 = cos2 (1 + sin)2 = 1 - sin2 1 + 2sin + sin2 = 1 - sin2 2sin2 + 2sin = 0 sin2 + sin = 0 sin(sin + 1) = 0 so sin = 0 or sin = -1 But sin = -1 implies that cos = 0 and cos is non-zero. Therefore sin = 0 or the solutions are k*pi radians where k is an integer.


Solution for tan x is equal to cos x?

if tan x = cos x then sin x / cos x = cos x => sin x = cos x cos x => sin x = cos2 x => sin x = 1 - sin2x => sin2x + sin x - 1 = 0 Using the quadratic formula => 1. sin x = 0.61803398874989484820458683436564 => x = sin-1 (0.61803398874989484820458683436564) or => 2. sin x = -1.6180339887498948482045868343656 => x = sin-1 (-1.6180339887498948482045868343656)


What are infinite series used for?

They are used to approximate functions like sin(x) and cos(x), so a calculator, for example, can calculate sin (x) and cos(x), which are infinite series functions.