answersLogoWhite

0

(tan x + cot x)/sec x . csc x

The key to solve this question is to turn tan x, cot x, sec x, csc x into the simpler form.

Remember that tan x = sin x / cos x, cot x = 1/tan x, sec x = 1/cos x, csc x = 1/sin x

The solution is:

[(sin x / cos x)+(cos x / sin x)] / (1/cos x . 1/sin x)

[(sin x . sin x + cos x . cos x) / (sin x . cos x)] (1/sin x cos x)

[(sin x . sin x + cos x . cos x) / (sin x . cos x)] (sin x . cos x)

then

sin x. sin x + cos x . cos x

sin2x+cos2x

=1

The answer is 1.

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

Csc divided by cot squared equals tan multiplied by sec?

Yes.


What is the derivative of csc x?

The derivative of csc(x) is -cot(x)csc(x).


Can you simplify 1-cot x?

csc^2x+cot^2x=1


What is the anti derivative of cscxcotx?

∫cscxcotx*dx∫csc(u)cot(u)*du= -csc(u)+C, where C is the constant of integrationbecause d/dx(csc(u))=-[csc(u)cot(u)],so d/dx(-csc(u))=csc(u)cot(u).∫cscxcotx*dxLet:u=xdu/dx=1du=dx∫cscucotu*du= -csc(u)+CPlug in x for u.∫cscxcotx*dx= -csc(x)+C


How do you integrate the cscnx?

The integral for csc(u)dx is -ln|csc(u) + cot(u)| + C.


Cotangent squared plus one equals cosecant squared?

yes 1 + cot x^2 = csc x^2


Csc squared divided by cot equals csc x sec. can someone make them equal?

cot(x)=1/tan(x)=1/(sin(x)/cos(x))=cos(x)/sin(x) csc(x)=1/sin(x) sec(x)=1/cos(x) Therefore, (csc(x))2/cot(x)=(1/(sin(x))2)/cot(x)=(1/(sin(x))2)/(cos(x)/sin(x))=(1/(sin(x))2)(sin(x)/cos(x))=(1/sin(x))*(1/cos(x))=csc(x)*sec(x)


What is the derivative of 3tanx-4cscx?

7


Express csc theta in terms of cot theta theta is in quadrant 3?

It is -sqrt(1 + cot^2 theta)


What is the answer of csc x plus cot x?

Without an "equals" sign somewhere, no question has been asked,so there's nothing there that needs an answer.Is it the sum that you're looking for ?csc(x) + cot(x) = 1/sin(x) + cos(x)/sin(x) = [1 + cos(x)] / sin(x)


Tan plus cot divided by tan equals csc squared?

(tanx+cotx)/tanx=(tanx/tanx) + (cotx/tanx) = 1 + (cosx/sinx)/(sinx/cosx)=1 + cos2x/sin2x = 1+cot2x= csc2x This is a pythagorean identity.


How do you simplify csc theta cot theta?

There are 6 basic trig functions.sin(x) = 1/csc(x)cos(x) = 1/sec(x)tan(x) = sin(x)/cos(x) or 1/cot(x)csc(x) = 1/sin(x)sec(x) = 1/cos(x)cot(x) = cos(x)/sin(x) or 1/tan(x)---- In your problem csc(x)*cot(x) we can simplify csc(x).csc(x) = 1/sin(x)Similarly, cot(x) = cos(x)/sin(x).csc(x)*cot(x) = (1/sin[x])*(cos[x]/sin[x])= cos(x)/sin2(x) = cos(x) * 1/sin2(x)Either of the above answers should work.In general, try converting your trig functions into sine and cosine to make things simpler.