y = x2 or y = x +2, both are functions
Chat with our AI personalities
No.
An exponential function can be is of the form f(x) = a*(b^x). Some examples are f1(x) = 3*(10^x), or f2(x) = e^(-2*x). Note that the latter still fits the format, with b = e^(-2). The inverse is the logarithmic function. So for y = f1(x) = 3*(10^x), reverse the x & y, and solve for y:x = 3*(10^y)log(x) = log(3*(10^y)) = log(3) + log(10^y) = log(3) + y*log(10) = y*1 + log(3)y = log(x) - log(3) = log(x/3)The second function: y = e^(-2*x), the inverse is: x = e^(-2*y).ln(x) = ln(e^(-2*y)) = -2*y*ln(e) = -2*y*1y = -ln(x)/2 = ln(x^(-1/2))See related link for an example graph.
First, this function is strictly increasing on the entire real line, so an inverse exist on the entire real line. We define inverse of function f, denoted f^-1 such that if y = f(x) then f^-1(y) = x Or to find the inverse, all is needed is to isolate x in terms of y. In this case, y = 7x + 2 7x = y - 2 x = (y - 2)/7 So the inverse is x = (y - 2)/7 What? You don't like function in terms of y? Well, they are just meaningless variables anyway, you can write whatever, in particular the inverse is y = (x - 2) / 7 (the x, y here are independent with the x, y above. If you are getting confused, write b = (a - 2)/7 where b is a function of a)
Both. If you look at it like this: y=41-x you say x is independent and y is dependent of x (i.e. y is a function of x) For x=41-y you say y is independent and x is dependent of y (i.e. x is a function of y)
y0(x) could represent a function of x but usually y(0) represents the function y that is evaluated at x = 0 and so is no longer a function of x but a constant.