y0(x) could represent a function of x but usually y(0) represents the function y that is evaluated at x = 0 and so is no longer a function of x but a constant.
Chat with our AI personalities
The general equation for a linear approximation is f(x) ≈ f(x0) + f'(x0)(x-x0) where f(x0) is the value of the function at x0 and f'(x0) is the derivative at x0. This describes a tangent line used to approximate the function. In higher order functions, the same concept can be applied. f(x,y) ≈ f(x0,y0) + fx(x0,y0)(x-x0) + fy(x0,y0)(y-y0) where f(x0,y0) is the value of the function at (x0,y0), fx(x0,y0) is the partial derivative with respect to x at (x0,y0), and fy(x0,y0) is the partial derivative with respect to y at (x0,y0). This describes a tangent plane used to approximate a surface.
x0 and y0 usually denote the original condition or value for the variables x and y or may represent the first values in an array of values. Some final condition my be represented by x1 or y1 or x12 or y12 depending on how many conditions you want the values of x and y for.
Both. If you look at it like this: y=41-x you say x is independent and y is dependent of x (i.e. y is a function of x) For x=41-y you say y is independent and x is dependent of y (i.e. x is a function of y)
The [ 2x + 1 ] represents a function of 'y' .
No, this is not a function. The graph would have a vertical line at x=-14. Since there are more than one y value for every given x value, the equation does not represent a function. The slope of the equation also does not exist.