The range of a function is the interval (or intervals) over which the independent variable is valid, i.e. results in a valid value of the function.
When you take the derivative of a function, you are seeking a variation of that function that provides you with the slope of the tangent (instantaneous slope) at any value of (x). For example, the derivative of the function f(x)=x^2 is f'(x)=2x. Notice that the derivative is denoted by the apostrophe inside the f and (x). Also note that at x=0, f'(x)=0, which means that at x=0 the slope of the tangent is zero, which is correct for the function y=x^2.
The domain of a function determines what values of x you can plug into it whereas the range of a function determines the values that are your results. Therefore, look at the y-axis if you want to determine the range of a function and look at the x-axis if you want to determine the domain.
The function y=x is a straight line. The range is all real numbers.
Your question is fairly vague, but I'm interpreting it as:What is the range of y=12cos(x)?Shortform:-1212(pi)/6-->6sqrt(3)~10.392(pi)/4-->6sqrt(2)~8.485(pi)/3-->6(pi)/2-->02(pi)/3-->-63(pi)/4-->-6sqrt(2)~-8.4855(pi)/6-->-6sqrt(3)~-10.392(pi)-->-12If you continue this, you'll notice that the values keep switching back and forth from 12 to -12 then back to 12, passing through all the values in between. This is to be expected, because if you look at the graph of cosine (as well as sine), it oscillates back and forth between two values, giving it a wave-like appearance. From this you can easily surmise that the maximum value that 12cos(x) will ever reach is 12 and the minimum it will ever reach is -12, giving you the range [-12,12].Conceptually, if you examine just the function cos(x), you realize that it oscillates back and forth between -1 and 1. So the function 12cos(x) will just take whatever results from cos(x) and multiply it by 12. Since the range of cos(x) is [-1,1], the range of 12cos(x) will just be 12 times the range of cos(x), [-12,12]. This works for any numerical amplitude modification of a sine or cosine function (putting a number in front of the function). The range of 5cos(x) would be [-5,5], the range of (pi)cos(x) would be [-(pi),(pi)], and so on for any real number.
Yes, the tangent function is periodic.
No.
The inverse tangent, also called the arc-tangent.
It is probably arctan or arc tangent, the inverse of the tangent function.
When you graph a tangent function, the asymptotes represent x values 90 and 270.
It is a function which maps the tangent ratio - any real value - to an angle in the range (-pi/2, pi/2) radians. Or (-90, 90) degrees.If tan(x) = y then x is the inverse tangent of y.It is also known as "arc tangent", and spreadsheets, such as Excel, use "atan" for this function.Warning:1/tangent = cotangent is the reciprocal, NOT the inverse.
The tan [tangent] function.When a function has two or more brakes, this is not a continuous function, but it can be a continuous function in some intervals such as the tangent does.
A saddle point is a point in the range of a smooth function every neighbourhood of which contains points on each side of its tangent plane.
It is the cotangent function.
The range of the circular trig functions sin and cos is is [-1,1], but even in the case of circular functions the range of the tangent function is all real numbers. This is of course true of tangent even if we do not limit it to circular functions. So your question, I assume, is asking about all trig functions. If so the range is all real numbers.
Because the tangent is a function of with the angle as its argument.
Tangent is a function that can have any real value. Therefore one tangent can take any value in (-∞, ∞).