The derivative of ln x is 1/x The derivative of 2ln x is 2(1/x) = 2/x
The derivative of 3cos(x) is -3sin(x). This can be found using the chain rule, which states that the derivative of a composition of functions is the derivative of the outer function evaluated at the inner function, multiplied by the derivative of the inner function. In this case, the derivative of cos(x) is -sin(x), and when multiplied by the constant 3, we get -3sin(x) as the derivative of 3cos(x).
The derivative of csc(x) is -cot(x)csc(x).
y = (x^2)(sin x)(2x)(cos x) - 2sin xy' = [[(x^2)(sin x)][(2x)(cos x)]]' - (2sin x)'y' = [[(x^2)(sin x)]'[(2x)(cos x)] + [(2x)(cos x)]'[(x^2)(sin x)]]- (2sin x)'y' = [[(x^2)'(sin x) + (sin x)'(x^2)][(2x)(cos x)] + [(2x)'(cos x) + (cos x)'(2x)][(x^2)(sin x)] ] - 2(cos x)y' = [[(2x)(sin x )+ (cos x)(x^2)][(2x)(cos x)] + [2cos x - (sin x)(2x)][(x^2)(sin x)]] - 2(cos x)y' = (4x^2)(sin x cos x) + (2x^3)(cos x)^2 + (2x^2)(sin x cos x) - (2x^3)(sin x)^2 - 2cos xy' = (6x^2)(sin x cos x) + (2x^3)(cos x)^2 - (2x^3)(sin x)^2 - 2cos x (if you want, you can stop here, or you can continue)y' = (3x^2)(2sin x cos x) + (2x^3)[(cos x)^2 - (sin x)^2] - 2cos xy' = (3x^2)(sin 2x) + (2x^3)(cos 2x) - 2 cos xy' = (2x^3)(cos 2x) + (3x^2)(sin 2x) - 2 cos x
derivative of sec2(x)=2tan(x)sec2(x)
y = 2sin(x)cos(x)Use the product rule: uv' + vu' where u is 2sin(x) and v is cos(x) to find first derivative:y' = 2sin(x)(-sin(x)) + cos(x)2cos(x)Simplify:y' = 2cos2(x)-2sin2(x)y' = 2(cos2(x)-sin2(x))Use trig identity cos(2x) = cos2(x)-sin2(x):y' = 2cos(2x)Take second derivative using chain rule:y'' = 2(-sin(2x)cos(2x))Simplify:y'' = -2sin(2x)(2)Simplify:y'' = -4sin(2x)y'' = -4sin(2x)
The derivative of (sin (theta))^.5 is (cos(theta))/(2sin(theta))
derivative of 9[sin(x)]^2 is found by first letting u(x)=[sin(x)]^2. Note that sin2x = [sin(x)]^2, and the ^2 means raising the base to the exponent 2. Find the d(9u(x))/dx using the chain rule. d( 9u(x) )/dx = (d(9u)/du)(du/dx ) , by the chain rule. So we need: d(9u)/du = 9ulog(9) du/dx = d( [sin(x)]^2 )/dx = 2sin(x) d( sin(x) )/dx = 2sin(x)cos(x) Puttin this together gives: d( 9u(x) )/dx = 9u(log(9)) 2sin(x)cos(x) Now substitute in u(x) = [sin(x)]^2. d( 9u(x) )/dx = 9[sin(x)]^2(log(9)) 2sin(x)cos(x) = 2 log(9) 9[sin(x)]^2sin(x)cos(x) or = log(9) 9[sin(x)]^2sin(2x)
y = sin2(x) y' = 2sin(x)cos(x) y'' = 2 [ cos(x)cos(x) + sin(x)(-sin(x)) ] = 2 [ cos2(x) - sin2(x) ] = 2 [ 1 - sin2(x) - sin2(x) ] = 2 [ 1 - 2sin2(x) ]
sin4x=(4sinxcosx)(1-2sin^2x)
2 pi
3
3
The derivative of ln x is 1/x The derivative of 2ln x is 2(1/x) = 2/x
The derivative of cos(x) is negative sin(x). Also, the derivative of sin(x) is cos(x).
First find the derivative of each term. The derivative of any constant is zero, so d(1)/dx=0. To find the derivative of cos2x, use the chain rule. d(cos2x)/dx=-sin(2x)(2)=-2sin(2x) So the answer is 0-2sinx, or simply -2sinx
The answer will range between '2' & '-2' Reason; The Sine function ranges between '1' & '-1' , so if it has a coefficient of '2', this will increase the range to '2' & '-2'.