You are supposed to use the chain rule for this. First step: derivative of root of sin2x is (1 / (2 root of sin 2x)) times the derivative of sin 2x. Second step: derivative of sin 2x is cos 2x times the derivative of 2x. Third step: derivative of 2x is 2. Finally, you need to multiply all the parts together.
f'(x)=-sin2x(2) f'(x)=-2sin2x First do the derivative of cos u, which is -sin u. Then because of the chain rule, you have to take the derivative of what's inside and the derivative of 2x is 2.
-4
the derivative is 0. the derivative of a constant is always 0.
a definition is what it means, a derivative is what it derives from, like a root word
Sin2x = radical 2
d/dx [ 5 sin(2x) ] = 10 cos (2x)
sin2x is the conventional way of writing (sinx)2; it does not denote the sine of sinx as one might expect. So the square root is just sinx.
f'(x)=-sin2x(2) f'(x)=-2sin2x First do the derivative of cos u, which is -sin u. Then because of the chain rule, you have to take the derivative of what's inside and the derivative of 2x is 2.
y=1/sinxy'=(sinx*d/dx(1)-1*d/dx(sinx))/(sin2x)y'=(sinx*0-1(cosx))/(sin2x)y'=(-cosx)/(sin2x)y'=-(cosx/sinx)*(1/sinx)y'=-cotx*cscx
sin2X = sin2X What is it about ' equation ' you do you not understand. Of course they are equal!
-4
the derivative is 0. the derivative of a constant is always 0.
The derivative of sqrt(2) is zero.
The derivative of cos x is -sin x, the derivative of square root of x is 1/(2 root(x)). Applying the chain rule, the derivative of cos root(x) is -sin x times 1/(2 root(x)), or - sin x / (2 root x).
If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)If you mean:f(x) = x1 + root(2)The derivative of x1, or x, is simply 1. The derivative of the square root of 2, just like the derivative of any constant, is zero. Therefore, the derivative of the entire function is one.If you mean:f(x) = x1 + root(2)you shuld use the power rule (the exponent, multiplied by x to the power (exponent minus 1)):(1 + root(2)) xroot(2)
1/2rootx
The English derivative of the Latin root 'hortus' is "horticulture," which refers to the practice of cultivating gardens and tending to plants.