That would be 0. (But that was too easy. Did you mean something else?)
Chat with our AI personalities
No, limit can tend to any finite number including 0. It is also possible that the limit does not tend to any finite value or approaches infinity. Example: The limit of x^2+5 tend to 6 as x approaches -1.
Undefined: You cannot divide by zero
First, you can take the constant factor 3 out, to obtain 3 times the limit of (1 - cos x) / x. Since this is of the form 0/0, you can use L'Hôpital's rule, which states that in such cases, you can take the derivative of both numerator and denominator. This results in the limit (as x approaches 0) of sin x / x, that is, 1 / 1 = 1. So, the final result is 3 times the limit of 1 = 3.
,/` 2(1 - x) dx,/` 2 - 2x dx2x - x2 ...evaluated from 0 to t gives us...2t - t2 - [2(0) - (0)2]2t - t2
1 - cos x as x approaches 0. what is the cos of 0? It is 1. So as x approaches 0 cos x approaches 1. 1 - 1 = 0 So as it gets very small the solutions gets smaller.