answersLogoWhite

0


Best Answer

That would be 0. (But that was too easy. Did you mean something else?)

User Avatar

Wiki User

16y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the limit as t approaches 0 of 2t tan t?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How do you solve the limit as x approaches 90 degrees of cos 2x divided by tan 3x?

Take the limit of the top and the limit of the bottom. The limit as x approaches cos(2*90°) is cos(180°), which is -1. Now, take the limit as x approaches 90° of tan(3x). You might need a graph of tan(x) to see the limit. The limit as x approaches tan(3*90°) = the limit as x approaches tan(270°). This limit does not exist, so we'll need to take the limit from each side. The limit from the left is ∞, and the limit from the right is -∞. Putting the top and bottom limits back together results in the limit from the left as x approaches 90° of cos(2x)/tan(3x) being -1/∞, and the limit from the right being -1/-∞. -1 divided by a infinitely large number is 0, so the limit from the left is 0. -1 divided by an infinitely large negative number is also zero, so the limit from the right is also 0. Since the limits from the left and right match and are both 0, the limit as x approaches 90° of cos(2x)/tan(3x) is 0.


What is the Limits of h over tan h as h approaches 0?

The limit is 1.


What is limit as x approaches 0 of cos squared x by x?

The limit of cos2(x)/x as x approaches 0 does not exist. As x approaches 0 from the left, the limit is negative infinity. As x approaches 0 from the right, the limit is positive infinity. These two values would have to be equal for a limit to exist.


When does a problem in mathematics have no limit?

When the limit as the function approaches from the left, doesn't equal the limit as the function approaches from the right. For example, let's look at the function 1/x as x approaches 0. As it approaches 0 from the left, it travels towards negative infinity. As it approaches 0 from the right, it travels towards positive infinity. Therefore, the limit of the function as it approaches 0 does not exist.


Lim x approaches 0 x x x x?

When the limit of x approaches 0 x approaches the value of x approaches infinity.


What is the exact trigonometric function value of cot 0?

There is no value cot 0, because cot 0 is equivalent to 1 / tan 0, which is equivalent to 1 / 0, which is undefined. That said, the limit of cot x as x approaches 0 is infinity.


What is the limit of x cosine 1 over x squared as x approaches 0?

The limit is 0.


Can a chord also be a tangent?

In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)In the limit, a chord approaches a tangent, but is never actually a tangent. (In much the same way as 1/x approaches 0 as x increases, but is never actually 0.)


What is the limit of x2 as x approaches 0?

Here, just plug x=0 into x^2 to get 0^2=0. The limit is 0.


Lim x approaches 0 x x x x-?

When the limit of x approaches 0 the degree on n is greater than 0.


Is zero divided by zero equal to zero?

Actually 0/0 is undefined because there is no logical way to define it. In ordinary mathematics, you cannot divide by zero.The limit of x/x as x approaches 0 exists and equals 1 so you might be tempted to define 0/0 to be 1.However, the limit of x2/x as x approaches 0 is 0, and the limit of x/x2 as x approaches 0 does not exist .r/0 where r is not 0 is also undefined. It is certainly misleading, if not incorrect to say that r/0 = infinity.If r > 0 then the limit of r/x as x approaches 0 from the right is plus infinity which means the expression increases without bounds. However, the limit as x approaches 0 from the left is minus infinity.


What is the limit of sine squared x over x as x approaches zero?

So, we want the limit of (sin2(x))/x as x approaches 0. We can use L'Hopital's Rule: If you haven't learned derivatives yet, please send me a message and I will both provide you with a different way to solve this problem and teach you derivatives! Using L'Hopital's Rule yields: the limit of (sin2(x))/x as x approaches 0=the limit of (2sinxcosx)/1 as x approaches zero. Plugging in, we, get that the limit is 2sin(0)cos(0)/1=2(0)(1)=0. So the original limit in question is zero.