answersLogoWhite

0

The time complexity of Dijkstra's algorithm for finding the shortest path in a graph is O(V2) with a simple implementation using an adjacency matrix, and O(E V log V) with a more efficient implementation using a priority queue.

User Avatar

AnswerBot

2mo ago

Still curious? Ask our experts.

Chat with our AI personalities

BeauBeau
You're doing better than you think!
Chat with Beau
MaxineMaxine
I respect you enough to keep it real.
Chat with Maxine
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin

Add your answer:

Earn +20 pts
Q: What is the time complexity analysis of Dijkstra's algorithm for finding the shortest path in a graph?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Computer Science

What is the time complexity of the algorithm for finding the shortest path in a graph using Dijkstra's algorithm?

The time complexity of Dijkstra's algorithm for finding the shortest path in a graph is O(V2) with a simple implementation using an adjacency matrix, or O((V E) log V) with a more efficient implementation using a priority queue.


What is the runtime complexity of Dijkstra's algorithm for finding the shortest path in a graph?

The runtime complexity of Dijkstra's algorithm for finding the shortest path in a graph is O(V2) with a simple implementation using an adjacency matrix, or O((V E) log V) with a more efficient implementation using a priority queue.


What is the fastest algorithm for finding the shortest path in a graph?

The fastest algorithm for finding the shortest path in a graph is Dijkstra's algorithm.


What are the key differences between the Floyd-Warshall and Dijkstra algorithms for finding the shortest path in a graph?

The key difference between the Floyd-Warshall and Dijkstra algorithms is their approach to finding the shortest path in a graph. Floyd-Warshall algorithm: It is a dynamic programming algorithm that calculates the shortest path between all pairs of vertices in a graph. It is efficient for dense graphs with negative edge weights but has a higher time complexity of O(V3), where V is the number of vertices. Dijkstra algorithm: It is a greedy algorithm that finds the shortest path from a single source vertex to all other vertices in a graph. It is efficient for sparse graphs with non-negative edge weights and has a lower time complexity of O(V2) with a priority queue implementation.


When does Dijkstra's algorithm fail to find the shortest path in a graph?

Dijkstra's algorithm fails to find the shortest path in a graph when the graph has negative edge weights.