It all depends on what calculator you use to know how to program the formula into it.
Asymptotes are the guidelines that a hyperbola follows. They form an X and the hyperbola always gets closer to them but never touches them. If the transverse axis of your hyperbola is horizontal, the slopes of your asymptotes are + or - b/a. If the transverse axis is vertical, the slopes are + or - a/b. The center of a hyperbola is (h,k). I don't know what the rest of your questions are, though.
A hyperbola is a math term meaning a curve in which the distances form either a fixed point or a straight line with a fixed ratio. The formula to find the eccentricity of a hyperbola is "E=C/A," with A being the distance from the center to the focus, and C being the distance from the center to the vertex. Math fans say that solving this formula is about as easy as solving for the area of a triangle, meaning it is not a difficult concept to master.
Defn: A hyperbola is said to be a rectangular hyperbola if its asymptotes are at right angles. Std Eqn: The standard rectangular hyperbola xy = c2
Two foci's are found on a hyperbola graph.
If a hyperbola is vertical, the asymptotes have a slope of m = +- a/b. If a hyperbola is horizontal, the asymptotes have a slope of m = +- b/a.
denominators
denominators
Among the websites that have a quadratic formula calculator is the MathWarehouse. Others are the websites CoolMath, RapidTables, MathDefined, and MathIsFun.
Buy a good calculator.
The axes of the hyperbola.
find the constant difference for a hyperbola with foci f1 (5,0) and f2(5,0) and the point on the hyperbola (1,0).