If the value of the variable is negative then the parabola opens downwards and when the value of variable is positive the parabola opens upward.
When you look at the parabola if it opens downwards then the parabola has a maximum value (because it is the highest point on the graph) if it opens upward then the parabola has a minimum value (because it's the lowest possible point on the graph)
Standard notation for a quadratic function: y= ax2 + bx + c which forms a parabola, a is positive , minimum value (parabola opens upwards on an x-y graph) a is negative, maximum value (parabola opens downward) See related link.
This is the coordinate of the vertex for a parabola that opens up, defined by a positive value of x^2.
The vertex is not affected by the direction that the parabola is facing. The vertex is the place where the two sides of the parabola meet. It is in the middle divides the shape in half. If you picture yourself looking at a bowl from the side and then imagining it as two dimensional, it would look like a parabola but for all of the filled in parts of the graph and the fact that the sides of the bowl don't continue on forever. The vertex is the bottom of the bowl, where the sides meet. You measure a vertex as you would a point; with a coordinate.
The standard equation for a Parabola with is vertex at the origin (0,0) is, x2 = 4cy if the parabola opens vertically upwards/downwards, or y2 = 4cx when the parabola opens sideways. As the focus is at (0,6) then the focus is vertically above the vertex and we have an upward opening parabola. Note that c is the distance from the vertex to the focus and in this case has a value of 6 (a positive number). The equation is thus, x2 = 4*6y = 24y
To find the value of a in a parabola opening up or down subtract the y-value of the parabola at the vertex from the y-value of the point on the parabola that is one unit to the right of the vertex.
A parabola has a minimum value when it looks like the letter U
right
Above
The domain of a parabola is always all real numbers because the domain represents the possible x values. The x values are shown on the horizontal axis or x axis. Because, in a parabola, the 2 sides of the parabola go infinitely in a positive or negative direction, there is always a y value for any x value that u plug in to the equation.
The vertex of this parabola is at -2 -3 When the y-value is -2 the x-value is -5. The coefficient of the squared term in the parabola's equation is -3.