The coefficient of the squared term in a parabola's equation, typically expressed in the standard form (y = ax^2 + bx + c), is represented by the value (a). This coefficient determines the direction and the width of the parabola: if (a > 0), the parabola opens upwards, and if (a < 0), it opens downwards. The larger the absolute value of (a), the narrower the parabola.
7
To find the coefficient of the squared expression in the parabola's equation, we can use the vertex form of a parabola, which is ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex. Given the vertex is ((-4, -1)), the equation becomes ( y = a(x + 4)^2 - 1 ). When (y = 0) and (x = 2), substituting these values gives (0 = a(2 + 4)^2 - 1), leading to (0 = a(6^2) - 1) or (1 = 36a). Therefore, (a = \frac{1}{36}), which is the coefficient of the squared expression.
To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).
To find the coefficient of the squared expression in the parabola's equation, we can use the vertex form of a parabola, which is ( y = a(x - h)^2 + k ). Here, the vertex ((h, k)) is ((-4, 6)), so the equation becomes ( y = a(x + 4)^2 + 6 ). Using the point ((-3, 14)), we substitute to find ( a ): [ 14 = a(-3 + 4)^2 + 6 \implies 14 = a(1)^2 + 6 \implies 14 - 6 = a \implies a = 8. ] Thus, the coefficient of the squared expression is ( 8 ).
In the algebraic expression (8xz^2), the coefficient is the numerical factor that multiplies the variables. Here, the coefficient is (8). This means that the expression represents (8) times the product of (x) and (z) squared.
A coefficient is a number that accompanies a variable. For example, in the expression 2x + 4, the coefficient is 2.
The vertex of this parabola is at -3 -1 When the y-value is 0 the x-value is 4. The coefficient of the squared term in the parabolas equation is 7
7
It is 1/16.
To find the coefficient of the squared expression in the parabola's equation, we can use the vertex form of a parabola, which is ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex. Given the vertex is ((-4, -1)), the equation becomes ( y = a(x + 4)^2 - 1 ). When (y = 0) and (x = 2), substituting these values gives (0 = a(2 + 4)^2 - 1), leading to (0 = a(6^2) - 1) or (1 = 36a). Therefore, (a = \frac{1}{36}), which is the coefficient of the squared expression.
The vertex of this parabola is at 5 5 When the x-value is 6 the y-value is -1. The coefficient of the squared expression in the parabola's equation is -6.
-3
-3
To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).
To find the coefficient of the squared expression in the parabola's equation, we can use the vertex form of a parabola, which is ( y = a(x - h)^2 + k ). Here, the vertex ((h, k)) is ((-4, 6)), so the equation becomes ( y = a(x + 4)^2 + 6 ). Using the point ((-3, 14)), we substitute to find ( a ): [ 14 = a(-3 + 4)^2 + 6 \implies 14 = a(1)^2 + 6 \implies 14 - 6 = a \implies a = 8. ] Thus, the coefficient of the squared expression is ( 8 ).
-3.
Vertex = (3, - 2)Put in vertex form.(X - 3)2 + 2X2 - 6X + 9 + 2 = 0X2 - 6X + 11 = 0=============The coefficeint of the squared term is 1. My TI-84 confirms the (4, 3) intercept of the parabola and the 11 Y intercept shown by the function.