The coefficient of the squared term in a parabola's equation, typically expressed in the standard form (y = ax^2 + bx + c), is represented by the value (a). This coefficient determines the direction and the width of the parabola: if (a > 0), the parabola opens upwards, and if (a < 0), it opens downwards. The larger the absolute value of (a), the narrower the parabola.
7
To find the coefficient of the squared expression in the parabola's equation, we can use the vertex form of a parabola, which is ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex. Given the vertex is ((-4, -1)), the equation becomes ( y = a(x + 4)^2 - 1 ). When (y = 0) and (x = 2), substituting these values gives (0 = a(2 + 4)^2 - 1), leading to (0 = a(6^2) - 1) or (1 = 36a). Therefore, (a = \frac{1}{36}), which is the coefficient of the squared expression.
To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).
In the algebraic expression (8xz^2), the coefficient is the numerical factor that multiplies the variables. Here, the coefficient is (8). This means that the expression represents (8) times the product of (x) and (z) squared.
No, if there is a sqaured variable, the equation is not linear.
A coefficient is a number that accompanies a variable. For example, in the expression 2x + 4, the coefficient is 2.
The vertex of this parabola is at -3 -1 When the y-value is 0 the x-value is 4. The coefficient of the squared term in the parabolas equation is 7
7
It is 1/16.
To find the coefficient of the squared expression in the parabola's equation, we can use the vertex form of a parabola, which is ( y = a(x - h)^2 + k ), where ((h, k)) is the vertex. Given the vertex is ((-4, -1)), the equation becomes ( y = a(x + 4)^2 - 1 ). When (y = 0) and (x = 2), substituting these values gives (0 = a(2 + 4)^2 - 1), leading to (0 = a(6^2) - 1) or (1 = 36a). Therefore, (a = \frac{1}{36}), which is the coefficient of the squared expression.
The vertex of this parabola is at 5 5 When the x-value is 6 the y-value is -1. The coefficient of the squared expression in the parabola's equation is -6.
-3
-3
To find the coefficient of the squared term in the parabola's equation, we can use the vertex form of a parabola, which is (y = a(x - h)^2 + k), where ((h, k)) is the vertex. Given the vertex at (3, 1), the equation starts as (y = a(x - 3)^2 + 1). Since the parabola passes through the point (4, 0), we can substitute these values into the equation: (0 = a(4 - 3)^2 + 1), resulting in (0 = a(1) + 1). Solving for (a), we find (a = -1). Thus, the coefficient of the squared term is (-1).
-3.
In the algebraic expression (8xz^2), the coefficient is the numerical factor that multiplies the variables. Here, the coefficient is (8). This means that the expression represents (8) times the product of (x) and (z) squared.
Vertex = (3, - 2)Put in vertex form.(X - 3)2 + 2X2 - 6X + 9 + 2 = 0X2 - 6X + 11 = 0=============The coefficeint of the squared term is 1. My TI-84 confirms the (4, 3) intercept of the parabola and the 11 Y intercept shown by the function.