The use of a breaker in a circuit is to protect the wire size used in the circuit from becoming overloaded. Using the wattage of the load does not help for breaker sizing because the breaker operates on amperage. Amperage can be found from wattage by using the following equation. I = W /E. Amps = Watts / Volts. As you can see the amperage can not be calculated because there is no voltage stated.
Chat with our AI personalities
This formula will give you the amperage I = kw x 1000/1.73 x E x pf (pf = power factor). Take the amperage and multiply it by 125%. This will give you the breaker size that you need.
AWG #3 copper.
In standard construction this would require a 15 amp breaker and 14 gauge copper wire.
A 5 kW generator would turn it over but if the full 30 hp of mechanical power is needed, that would require about 30 kW of electric power from the generator.
3000 / 240 = Amps. You de-rate a breaker by 20 % for continuous load like an oven. You could get by with a 20 Amp breaker and 12 AWG wire. However, I would recommend 30 Amps and 10 AWG for an oven for the long run.