Want this question answered?
Be notified when an answer is posted
Chat with our AI personalities
yes a discontinuous function can be developed in a fourier series
The fourier series of a sine wave is 100% fundamental, 0% any harmonics.
When we do a Fourier transformation of a function we get the primary term which is the fundamental frequency and amplitude of the Fourier series. All the other terms, with higher frequencies and lower amplitudes, are the harmonics.
The Fourier series can be used to represent any periodic signal using a summation of sines and cosines of different frequencies and amplitudes. Since sines and cosines are periodic, they must form another periodic signal. Thus, the Fourier series is period in nature. The Fourier series is expanded then, to the complex plane, and can be applied to non-periodic signals. This gave rise to the Fourier transform, which represents a signal in the frequency-domain. See links.
Consider a periodic function, generally defined by f(x+t) = f(x) for some t. Any periodic function can be written as an infinite sum of sines and cosines. This is called a Fourier series.