true
The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.
legs of an isosceles triangle
No. The triangle is an isosceles triangle and the angle between the equal sides can be any angle greater than 0° and less than 180°.
"If two legs of one right triangle are congruent to the corresponding legs of another right triangle, then the two triangles are congruent."Example:Given:
The isosceles triangle theorem states that if two sides of a triangle are congruent, the angles opposite of them are congruent. The converse of this theorem states that if two angles of a triangle are congruent, the sides that are opposite of them are congruent.
true
Yes if you mean in degrees
LL Congruence theorem says: If the two legs of one right triangle are congruent to the two legs of another right triangle, then the two right triangles are congruent.
The four congruence theorem for right triangles are:- LL Congruence Theorem --> If the two legs of a right triangle is congruent to the corresponding two legs of another right triangle, then the triangles are congruent.- LA Congruence Theorem --> If a leg and an acute angle of a right triangles is congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.- HA Congruence Theorem --> If the hypotenuse and an acute angle of a right triangle is congruent to the corresponding hypotenuse and acute angle of another triangle, then the triangles are congruent.- HL Congruence Theorem --> If the hypotenuse and a leg of a right triangle is congruent to the corresponding hypotenuse and leg of another right triangle, then the triangles are congruent.
That's only true if the "legs" are indeed legs, i.e. the triangle is a right triangle, and the legsinclude a 90-degree angle.
False! Objection! No! :P ~
1.HyL Theorem (Hypotenuse-Leg) - if the hypotenuse and leg of one triangle is congruent to another triangle's hypotenuse and leg, then the triangles are congruent. 2.HyA (Hypotenuse-Angle) - if the hypotenuse and angle of one triangle is congruent to another triangle's hypotenuse and angle, then the triangles are congruent. 3.LL (Leg-Leg) if the 2 legs of one triangle is congruent to another triangle's 2 legs, then the triangles are congruent. 4.LA (Leg-Angle) if the angle and leg of one triangle is congruent to another triangle's angle and leg, then the triangles are congruent.
four types aressssasrhsasa1.HyL Theorem (Hypotenuse-Leg) - if the hypotenuse and leg of one triangle is congruent to another triangle's hypotenuse and leg, then the triangles are congruent.2.HyA (Hypotenuse-Angle) - if the hypotenuse and angle of one triangle is congruent to another triangle's hypotenuse and angle, then the triangles are congruent.3.LL (Leg-Leg) if the 2 legs of one triangle is congruent to another triangle's 2 legs, then the triangles are congruent.4.LA (Leg-Angle) if the angle and leg of one triangle is congruent to another triangle's angle and leg, then the triangles are congruent.
the only way for a right triangle to have a line of symmetry, is if the legs of the triangle are congruent. Or you can show that both non-right angles are congruent (45 degrees). you may also prove that the altitude of the triangle bisects the hypotenuse or that it equals 1/2 of the hypotenuse.
Sides.
legs of an isosceles triangle
1. The side angle side theorem, when used for right triangles is often called the leg leg theorem. it says if two legs of a right triangle are congruent to two legs of another right triangle, then the triangles are congruent. Now if you want to think of it as SAS, just remember both angles are right angles so you need only look at the legs.2. The next is the The Leg-Acute Angle Theorem which states if a leg and an acute angle of one right triangle are congruent to the corresponding parts of another right triangle, the two right triangles are congruent. This is the same as angle side angle for a general triangle. Just use the right angle as one of the angles, the leg and then the acute angle.3. The Hypotenuse-Acute Angle Theorem is the third way to prove 2 right triangles are congruent. This one is equivalent to AAS or angle angle side. This theorem says if the hypotenuse and an acute angle of a right triangle are congruent to the hypotenuse and an acute angle of another right triangle, the two triangles are congruent. This is the same as AAS again since you can use the right angle as the second angle in AAS.4. Last, but not least is Hypotenuse-Leg Postulate. Since it is NOT based on any other rules, this is a postulate and not a theorem. HL says if the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.