Oh, dude, making generalizations about polygons is like trying to figure out why people still use fax machines. You just look at the sides and angles of different polygons, see what they have in common, and boom, you've got yourself a generalization. Testing it is like checking if your favorite food is still delicious - just try it out with different polygons and see if it holds up. Easy peasy, lemon squeezy!
Polygons are unbounded because they close on themselves in a circuit. An infinite polygon goes on forever, making it unbounded. A skew polygon has three dimensions of zig-zagging and a spherical polygon, on the sphere surface, is a circuit of corners and sides.
You have to see it both the polygons measures to the same degree's & the same shape then that make's it congruent.
I am not 100% sure but I think the most polygons in it is a hexagon since its a hexagonal prsim....
They are faces the polyhedron.
They are all polygons !
Polygons are flat shapes with many sides
Oh, dude, making generalizations about polygons is like trying to figure out why people still use fax machines. You just look at the sides and angles of different polygons, see what they have in common, and boom, you've got yourself a generalization. Testing it is like checking if your favorite food is still delicious - just try it out with different polygons and see if it holds up. Easy peasy, lemon squeezy!
They are all 5, 4 and 6 sided polygons respectively
Generalisation to 3: 3 tetrahedra and 3 polyhedra, possibly.
They are both 2 dimensional polygons having their own unique properties
Polygons are unbounded because they close on themselves in a circuit. An infinite polygon goes on forever, making it unbounded. A skew polygon has three dimensions of zig-zagging and a spherical polygon, on the sphere surface, is a circuit of corners and sides.
They are both polygons whose exterior angles add up to 360 degrees
They are all polygons whose sides are consecutive in numbers as such as 3, 4 and 5 respectively
what generalization can you make about the location of settlements in the desert southwest
The steps on making a generalization is Identify the topic,Gather examples,examine the examples for similarities,and make the generalization.
identify the topic, gather examples ,examine them for simlarities, make your generalization