answersLogoWhite

0

The values of p and q work out as -2 and 4 respectively thus complying with the given conditions.

User Avatar

Wiki User

9y ago

Still curious? Ask our experts.

Chat with our AI personalities

TaigaTaiga
Every great hero faces trials, and you—yes, YOU—are no exception!
Chat with Taiga
SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
JudyJudy
Simplicity is my specialty.
Chat with Judy

Add your answer:

Earn +20 pts
Q: What are the values of p and q if y plus 4x equals 11 is the perpendicular bisector equation of the line joining p 2 to 6 q?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

What is the perpendicular bisector equation of the line y equals 17 -3x that spans the parabola of y equals x squared plus 2x -7?

In its general form of a straight line equation the perpendicular bisector equation works out as:- x-3y+76 = 0


What are the values of a and b given that y plus 4x equals 11 is the perpendicular bisector equation of the line joining a 2 to 6 b?

Their values work out as: a = -2 and b = 4


What is the value of k when y equals kx plus 14 is the perpendicular bisector equation of the line from 1 2 to 9 6?

Points: (1, 2) and (9, 6) Midpoint: (5, 4) Slope: 1/2 Perpendicular slope: -2 Perpendicular bisector equation: y-4 = -2(x-5) => y = -2x+14 Therefore: k = -2 thus satisfying the given bisector equation


What is the perpendicular bisector equation of the chord y equals x plus 5 within the circle x2 plus 4x plus y2 -18y plus 59 equals 0?

Form a simultaneous equation with chord and circle and by solving it:- Chord makes contact with circle at: (-1, 4) and (3, 8) Midpoint of chord: (1, 6) Slope of chord: 1 Slope of perpendicular bisector: -1 Perpendicular bisector equation: y-6 = -(x-1) => y = -x+7


What is the perpendicular bisector equation of the line y equals x plus 5 spanning the circle x2 plus 4x plus y2 -18y plus 59 equals 0?

Equation of line: y = x+5 Equation of circle: x^2 +4x +y^2 -18y +59 = 0 The line intersects the circle at: (-1, 4) and (3, 8) Midpoint of line (1, 6) Slope of line: 1 Perpendicular slope: -1 Perpendicular bisector equation: y-6 = -1(x-1) => y = -x+7 Perpendicular bisector equation in its general form: x+y-7 = 0